9.1

9.0 INDICES OF ABUNDANCE
9.1 Introduction

In theory, ectogists and wildlife managers depend on arange of
sophisticated methods for assessing population abundance. Inpractice, it is
often necessary torely on some sort ofindex to abundance, supplemented
perhaps byoccasional use of the technically more satisfactory methods on a
few sample areas. Alost always the linitation is simply one of costs. If one
must deal with largeareas it simply istoo expensive touse the better methods
on a regular basis. Dice (1941:402) expressed the general idea very well:

"The difficulty of obtaining accuratecounts of the number ofndividual
mammals present on given area has led tattempts todevelop indces of
abundance for the species concerned.Such indces may or may not be
convertible into terms of population density. For many practical uses,
however, it is sufficient to know the relative abundance of @articular
species indifferent areas or atdifferent times without having an exact
count of the population”.

Most of the experience inthe 60years since Dice's statement was published
tends to showthat exactcounts are often not feasible. Estimates ofsome kind
are about all that can be managed, and these are usually difficult to achieve.

One ofthe risks in using an index is that it mayot accurately reflect
actual population tends. White-tailed deer (docoileus virginianus) pellet
group counts provide one of the beskamples of auseful index of abundance,
yet Ryel (1971)found that drive countson a fenced Michigan area yielded an
inverse correlation between countand index values over 11 years afata. He
pointed out various reasonsfor failure of the pellet goup count methodused
in this instance, and gave agood discussion of ways and rmans for
maintaining quality and integrity of the method.

Three approaches to usingindices can be considered : (1) Direct
conversion to acensus method.The pellet gioup counts provideone of the
better known examplesjnasmuch aghe counts, under proper circumstances,
can beconverted directly to an etimate of average numbers ofdeer present
on an area. (2) @libration through ratio and regression methods, including
double sampling. A simple linearelationship between anindex and anactual
estimate of abundance isused toconvert the index to anactual estimate of
abundance. (3)alculation of an improvedindex or aprediction equation. At
times, supplemental information may besed tostrengthen anindex without
converting it to a direct estimate. These aspects are summarized in Fig.9.1.

Several sources oVariability need to beconsidered inappraising an
index method. One isstochastic in nature,arising from the variability of the
chance fluctuations in the births and deaths that result in change in
population size. These changes occur evenin the presence ofconstant birth
and death rates, diminishing in importance as the population increaseszen
Theoretically, such effects can be neglected if fairly large populations are
under study. However, weusually can only study part ofarge populations,
either through sampling the large population or by countsraatively small
sample areas.Stochastic effects mayhen become mportant. Asecond source
of variability arises when birth and death rates are influenced by
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environmental fluctuations, such as an unusual cold spell or other
environmental change during the reproductive season. Sometimessuch
changes are large enough to belabelled "catastrophic” and the results then
are usually dramatic enough to attract attention to specific causes. Less
dramatic changes may be difficutb detect. A third souce ofvariability isthat
engendered bythe sampling orobservational process through which data on
the population are obtained. Trying tosort out these several sources of
fluctuations in numbers may beery difficult and deserves more attention
than it usually gets.
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Fig. 9.1 Aspects of the analysis of potential index data.

Indices have received very little attention. The large and extensive
reference onestimating animal abundance bySeber (1982) contains only a
few pages on indices. This is not Seber's fault, begults simply becausdhere
is very little literature onthe subject, whereas the stochastic models implicit
in tag-recovery and survival data have received much attention in both
theory and practice.The presentation here will thus start out by examining a
number ofsets of data orpopulation trends, and hen consider some specific
techniques.
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Exampl e 9.1 The pellet-group count

One of the better-known wildlife nanagenment indices is based
on the enuneration of accurmulated fecal pellets of wungulates
(sometines politely known as "sign", although the term may also
i nclude other kinds of evidence of an animal's presence). Under
favorabl e conditions the nmethod may provide direct estimtes of
abundance. Such conditions usually depend on a substantial |eaf-
| ayer deposited in the fall of the year (or other nethods of
separating "old" and "new' pellet-groups) plus the over-wnter
accunul ation of groups. Even though many ungulates appear to
produce nearly 13 pellet-groups per day (with surprisingly snall
variance), it is nonetheless true that even an assunption of
random di stribution of groups still results in the need for rather
| arge nunbers of plots being searched to give useful precision in
estimation. Thus long accunulation periods are essential. Sone
wor kers have resorted to renoving pellets from plots (or marking
those initially present) in order to be assured of an accurate
starting date. Unfortunately, this doubles the fieldwork required.

Al though there is a variety of possible sources of error (a
major one is sinply failure to find all of the groups on a plot),
some experience with pellet-group counts on areas where popul ation
density could be determ ned quite accurately by other methods has
shown reasonabl e accuracy in estimating the actual nunber of deer
present. For imedi ate purposes here, though, we will consider the
nmet hod as an i ndex. The nodel is sinply:

B(x BD;j

or that the expected nunber of pellet-groups per unit area (xj) is
directly proportional to the density (Dj) of aninmals present on

the ith area. The proportionality constant (f) depends on the
defecation rate (essentially 13 groups per day), length of
accunul ation period, and units of neasurenment of the plots. One
further conplication is that, if the accumulation period is |ong
(and includes winter conditions and perhaps a hunting season),
then there may be an appreciable nortality over the period
represented by the counts, so that the estimate obtained is really
for an average density.

If independent direct estimates of deer density are
avail able, <calibration nmy be attenpted by wusing ratio or
regression nmethods to convert pellet-group counts to density
estinmates, i.e., we use a set of direct population estimtes (yj)

and a set of pellet-group counts (xj) on the sane areas and turn
t he above equation around to as to have:

i B E(Yi) = (1B) E(X))

so that an estimate of 1/ is obtained fromthe conparisons.
However, as remarked above, the pellet-group count can al so be
converted directly. If the mean nunber of pellet-groups on 1/50th
acre plots on the ith area is xj, then a direct estimate is given
by (Eberhardt and Van Etten 1956):
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Dj = 50(640)xj/12.7(days since leaf-fall)

where Dj denotes the estimated nunber of deer per square nmile and

1/B is calculated from the several quantities on the right-hand
side of the equation. Hence, pellet-group counts can be used in
all 3 of the ways suggested in Fig. 9.1; directly, by calibration,
or by direct conversion. The latter two nethods should give the
sane value for 1/, within sanpling error.

Pel | et-group counts represent an excellent exanple, perhaps
t he best known, of an index nethod susceptible to exact treatnent
by statistical nethods. This is because there is an exactly
definabl e popul ation (the total nunber of pellet-groups) available
on a discrete area. In nost cases, there will be a considerable
advantage to be gained by using stratified sanpling nethods, and
the costs of travel versus those associated with actual counting
on plots are such as to dictate the use of a cluster of plots at
each location (the individual plots cannot be very large due to
the effects of plot size on counting errors).

Sone experience has indicated that the negative binom al
distribution provides a good fit to the observed frequency of
pel l et-groups per plot, and this finding nmay be useful in the
efficient design of new surveys.

Exanmpl e 9.2 Conversion factors for pellet-group counts

Part of the Mchigan experience with pellet-group counts as a
census nethod includes counts on tw fenced areas in which deer
nunbers are supposedly known with sone accuracy. Data from one of
t hese areas (Cusino Enclosure) is as follows (Ryel 1971:124):

Mean number  Known number

of groups of deer per
Year _per plot square mile
1953 9.403 28.8
1954 2.252 25.0
1955 1.778 28.1
1956 2.246 29.3
1958 2.943 15.5

12.622 120.7

Using a ratio estimator, we obtain: E{:Hzlz.622/120.7 = 0. 105.

2%

N
Data for a direct estimate can be used to calculate: b ,=
[211(19.56)]/[50(640)] = 0.089. Here, 211 is the average nunber of
days since leaf-fall, and 19.56 is an average nunber of pellet-

groups per deer, adjusted for the sex and age conposition of the
known number of deer on the area. The direct conversion factor is

N
the reciprocal of b 2 or 11.2, which is somewhat higher than the

N
reciprocal of b 1 which is 9.5. One mght thus expect to
overestimate true deer density by using pellet-group counts,
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N N
if b 1 and b 2 are indeed as different as suggested here. There

are various other problenms in conmparisons on this and another such
area (Ceorge Reserve) and these were described in detail by Rye
(1971).

Exanpl e 9. 3 Roadsi de counts

Roadsi de surveys have been w dely used in assessing the
nunbers of many species, and a useful nodel for such a survey is
that used for pellet-group counts. However, [ is not so readily
defined in this case, being affected inportantly by the behavior
of the species, cover (habitat) conditions, along with the weat her
and various other factors such as time of day (many species are
nost active in early norning and in the evening). Quite a lot of
effort has gone into attenpts to standardi ze roadside surveys by
taki ng counts during specified times and weather conditions. Very
likely such standardization techniques are suitable for
controlling nost factors other than habitat differences. So far,
little has been done to try to take into account the effect on
visibility generated by different intensities of vegetative cover.
One obvious prospect is to attenpt to record distances from the
observer for each individual aninmal seen, in the nmanner of I|ine
transects, but a suitable nodel is needed for use of such a
correction.

The net effect of the several uncertainties about roadside
and other visual counts (such as aerial surveys) is to nake it
likely that such nmethods nmay be reasonably satisfactory for
conpari sons fromyear to year on the sane routes, but rather |ess
useful for conparisons of routes in different cover types.
Conversion will need to be acconplished by use of ratio or
regressi on nmet hods and independent direct estinates of density on
a sanple of areas, as there is presently no way to wite an
equation like that used for pellet-group counts for roadside
surveys.

Wl | - known exanples Of calling counts are counts of crow ng
pheasants, or of the drummi ng of ruffed grouse, cooing of doves,
etc. The usual technique is to make counts for a fixed period of
time (typically 2 to 5 mnutes) at each of a nunber of stations or
"stops". Nornmally the counts are nade al ong roads as a consequence
of the need to cover sizable areas. As with roadside counts, tinme
of day, weather, and seasonal effects are inmportant. Oten a
degree of standardization is achi eved by nmaki ng frequent counts on
a single route at different tines of the season. If the popul ation
on that route is assuned to remain constant, curves of calling
intensity against tine of day (and tinme of season) may serve as a
reference standard for adjusting the other counts.

Auditory counts bring in the hearing acuity of the
i ndi vi dual observer as an inportant additional variable. A usefu
nodel may then be:

e Bﬁz Dj
where rj represents the radius within which a call may be heard by

an individual observer. Presumably such a radius may also depend
on cover and weather conditions (plus interference from other
sounds -- traffic noise being usually the main offender), so there
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may be a "regional effect” as well as an "observer effect” on the
recorded counts.

The following table gives results of hunting success and calling
counts for Ganble quail in Arizona.

Hunting success and calling counts for Gambel quail in Arizona (Smith
and Gallizioli 1965).

Oracle Junction Pinnacle Peak Cave Creek

Quail Call

Year _per trip count
y X y X y X

1958 3.81 61 353 83 -- --
1959 2.70 24 1.37 10 -- --
1960 6.40 103 3.74 94 296 72
1961 2.57 25 1.20 22 0.64 8
1962 6.09 75 2.83 59 255 64
1963 4.84 62 1.70 25 1.82 36
1964 2.91 41 1.60 15 1.38 26
Totals 29.32 391 15.97 308 9.35 206
by =sY/sX = 075 052 045
by =SYX/EX?= 070 044 043
Regression
slopes .054 .030 .034
Reg.
intercepts 1.200 .94 45

Exanpl e 9.4 A pocket-gopher exanpl e.

Reid et al.(1966) gave an interesting exanple in which an index
(mounds and earth plugs) of pocket-gopher (Thononys tal poides)
abundance is conpared with actual abundance, as established by
t rappi ng- out gophers on sizable plots. They concluded that the
rel ati onship between nunber of gophers present and the index was
curvilinear, but did so by plotting the nunber of gophers per
unit area against the nunmber of signs. Such a plot does indeed
suggest a nonlinear relationship. However, there were 2 areas
(Black and Grand Mesas) studied in 3 years (1962 to 1964).

If we assunme the trap-outs to nmeasure absol ute abundance, without
sampling error, and adopt the nopdel of sinple proportionality,
E(x,)=BDi, then the appropriate plot is of signs (Y) against
gophers per acre (X). Also, if the areas and years are plotted
separately (or distinguished by individual synmbol s), then it
seens that the apparent curvilinearity may really be due to
differences in B between years and/or areas. It is further
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evident that wvariability increases with increasing density of
gophers. Hence, we adopt the nodel: Xjj = bjj Dij ejj, where Xxjj
denotes number of signs in the i th year and j th area, Dj is
actual density of gophers, bjj is the proportionality constant
between gophers and sign, and ejj is a proportional "chance"
error. Since Djj is assuned to be neasured w thout error (or with

negligible error), we can arrange the equation in terns of signs
per gopher, i.e., consider:
Yij Dij bij eijj
and take | ogarithns:

log yij = log xijj - log Dijj = log bjj + log ejj
Then the data can be subjected to a sinple one-way analysis of
variance. The results indicate that there are significant
di fferences and, using a multiple-conparison test (Scheffe 1959)
shows that Gand Mesa in 1963 is significantly different fromits
1964 value and from Black Mesa in 1962. W are thus fairly
confident that the min factor in the apparent curvilinear
relationship is really a difference between areas and years, but
could not, of course, exclude a behavioral difference as a
possibility at low densities. The conclusion here, as with the
quai |l exanple above, is that it will very likely be necessary to
i nclude both spatial and tenporal data in any initial efforts to
cal i brate an index.

Abundance of pocket-gopher sign (nmounds and earth plugs on one-
acre plots) expressed as logarithm (base e) of signs per gopher
(Reid et al. 1966).

Black Mesa Grand Mesa
1962 1963 1964 1963 _1964
191 276 2.01 2.03 1.82
232 223 202 1.99 2.06
205 216 2.18 2.17 1.41
2.02 192 254 224 1.69
1.86 2.36 1.55 2.07 154
1.31 248 1.40 2.88 1.76
158 265 1.61 2.18 2.27
1.80 1.88 1.83 2.63 2.12
205 193 1.43 242 2.09
2.04 214 224 254 2.04
1.70 2.20
1.74
2.07
X = 1.882 2.253 1.910 2.316 1.880
nj =13 10 11 10 10

s2 = 0.0670 .0947 .1395 .0865 .0780
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9.2 Trends in abundance

For at least the larger vertebrates, there are few occasions waen on
the full course ofthe growth of a population are available. Wually only a
relatively shot segment ofthe record of population size is at hand. A
conceptual model of the overall possible course evients isnonetheless useful
for interpreting these shorter segments ofdata. Ecology textbooks describe
long-term population growth by the logistic model. Further details of this
model appear inthe chaper on population models, but the generalshape is
illustrated bythe trend of anelephant seal population (Fig. 9.2). Thelogistic
curve is characterized by rapid initial population growth thddws downover
time, with the curve ultimately approaching anasymptotic level (often
denoted askK). The approach to anasymptotic value may beerratic with large
year-to-year fluctuations. Slowing-down ofthe growth rate usually is
associated with resource limitations of one sort or another, often foospace.
Such restrictions make populations highly susceptible to year-to-weamther
fluctuations.

The logistic curve assumes a&onstant decline through time ofthe rate
of increase. Although data are limitedyvidence for &arge mammals Eberhardt
1977b, Fowler 1981) suggest that adifferent model may beappropriate, with
the rate ofpopulation growth virtually constant over much ofthe range, and
then slowing down sharply asthe asymptotic value (K) is approached. A
simple exponential growth curve may then be adequate to to describe the
initial stages ofgrowth. The essential featurefor present purposes, howver,
is the overall sigmoid shape ofthe curve -- concave-upwards inthe early
stages, and concave-downwards as growth slows down.
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Fig. 9.2. Growth of arelephant seal population (Stewart et al.1994) with a logistic curve
fitted by non-linear least-squares.Data arenumber ofbirths tallied oncolonies on Ano
Nuevo Island and the adjacent mainland.
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If one accepts generality ofthe sigmoid curve illustrated in Fig. 9.2,
then the analysis of a shaer series of observations will obviously be
influenced bythe position ofthe datasegment onthe overall curve. Abasic
criterion is simply whether acurve drawn through the data segment is
concave-upwards (initial growth stages) ooncave-downwards (approaching
the asymptotic level). If the early growth segment essentially follows an
exponential curve, then plottindogarithms ofthe counts against time should
yield a straight line. Two examples of such data appear in Fig. 9.3.
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Fig. 9.3. Growth curves for bison (upper panels)with an exponential curg fitted to
numbers counted on the left, and a straight line fittedldgarithms ofnumber counted on
the right. Data fromFredin (1984). Lower parels show an exponential curg fitted to
numbers of Muskox on Nunivak Island, Alaska and theresponding loglinear regssion
line. Data from Spencer and Lensink (1970).

Many sets ofpopulation trend data aremuch more variable han those
shown above, and we thus need twnsider statistical tests. Asimple test for
curvilinearity is demonstrated inSection 9.3. Various monte carlsimulations
were conducted byEberhardt (1992) to appaise the utility of the approach in
attempting to determine whether aegment ofpopulation trend data could be
demonstrated to be above or below the inflection point on a curve like that of
Fig. 9.2 (the inflection point divides growth curve into 2 segments;the slope
of the curve increases up tahe inflection point and decreases beyond it). A
two-stage test was developed. The observed, umansformed, numbers of the
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trend index are checked for curvilinearity in the first stage. If this teshdsn-
significant, hen the dataare log-transformed and the testagain applied. The
first stage examines data of the form of the left side of Fig. 9.3. The basis for the
second-stage test is the fact that the exponentiaive becomes atraight line
under log-transformation (right side graphs ofFig. 9.3), soshould not show a
significant departure from linearityin the test. However,the right-hand Ilimb

of Fig. 9.2 remains curved under the log-transform.

9.3 Testing significance of trend lines

In exhibiting curves like those ofthe left side of Fig. 9.3 above, the
exponential curve was used. Growth of large vertebrates maybetter be
described by a okely related curve, the geometric (see Fig. 11.1 and the
accompanying discussion). Either curve can berepresented bythe model of

eq.(9.1) by lettingh = €t or x = (1+r)t, as discussedin Chapter 11, so weuse the
following simple model for a population growing at a constant rate.

t:N\lo)\t (91)
where N represents abundance amé t, and A is a measure ofthe rate of

change ofthe population. Taking natural logarithms converts this model to a
linear equation, so we expect the trend to be a straight line if the inded is
the logarithm of observed numbers:

doyt = logeNg + t loge A (9.2)
We thus tend to plot logarithms of observations of abundance, and twadoous
kinds of linear regression analyses inexploring the data.In the present
section, we will examine a number of sets of data amtual populations and try
to infer something about trends from simple regressions.

To study trend, we fit eq.(9.2) by lineaegression methods, rewriting it
as y = a +bx, where y = lggNt, x = t, and b =log\. For pumposes of calculation, t
will be used here as thsequence ofyears, 1,2,3,... Weare mainly concerned
with the slope (b) and variance about regression, sothat the observed
sequence ofdates might serve equally well, i.e., we could use 1967, 1968,1969,
etc. in regression calculations. However, this should not be done in practice
due to the prospect of introducing "roundoff" errors in the regression
calculations when the x-values are sizable numbers (i.e, one should use the
sequence 1,2,3.. for calculations andlater plot data against the actual years,
1967, 1968, 1969). A key measure of variability is the "regression nsxpmare”,
or variance about regression, often written as MS3eq It can be calculated by

fitting the linear regression and calculating:

Mg = {Z [yt - (@ + b)PY(n - 2) (9.3)
In most instances, it will be desirable to check to see whether themvidence
that the logarithms ofthe index data appear tochange linearly with time,
suggesting a constant rate of change in th&pulation. Aneasy way to do this
is to fit a curve tothe data,and test for asignificant change inthe variability
around the fitted line. The simplest such curve isthe "quadratic® or second
degree polynomial. We now fit the function:

Y = a + bt2+ bt (9.4)
and calculate a variance as in eq.(3):

MSad= {Z [yt- (@ + bt + bpt?)]2}(n - 3) (9.5)
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In this instance, weuse n-3 "degrees of freedom", becausanother costant
(b2) has been estimated from thiata. Actual fitting ofeq. (9.4) isreadily done
by multiple regression. Many computer programs are available to do the
fitting, and most of thespreadsheet programwill provide such fits. An F-test
of significance can be calculated from the F-ratio:

SSLIN - SSQUAD

F MSquad (9.6)
where SSLIN =(n-2)MSreg and SSQUAD =(n-3)MSqguag and significance of the
F-ratio is checked intables of the F-distribution wth 1 and n-3 degrees of
freedom. These procedures are described inmore detail in most introductory
statistics texts, and in Chapter 6.

The test of eq9.6) can beapplied with other alternative cuves. For
example, a third degregolynomial can also be fitted to the data by multiple
regression. The equation is:

t¥ a+ bt + bpt? + bg3 (9.7)
Because this is a more flexible curve than eq.(9.4) it will ofegppear togive a
better ft. However, once adeparture from linearity is established, one really
needs more information than cahe derived from the curve alone in order to
assess thesituation. Estimates from eq.(8) for anumber ofspecies appear in
Fig. 9.4. Casesvhere eq(9.6) gave statistically significant results are denoted
by an asterisk (0.05 level of significance) or two asterisks (0.01 level of
significance). Avery high regression mean (0250) square forelephant seals
results from the nonlinearity evident in Fig. 9.2,and that value isnot shown
in Fig. 9.4 because of the clear evidence that a different curve is appropriate.
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Fig. 9.4. Regression mean square values computedfrom eq.(9.3) for various species. A
single asterisk indicates significance at th®05 level for thetest of eq. (9.6) and a
double asterisk indicates significance at th@0l1 level. Sources andcientific names
appear in Table 9.1.
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9.4 Assessment of trend data

Fig. 9.4shows awide range ofregression mean squares, and indicates
that the evidence of curvilinearity does not sem to be associated with
variability. Some ofthe likely sources ofdifferences amng speciescan be
identified asfollows. The mean square for grizzly bears has been assumed to
result from the effect of environmental conditions oncounts. In wetyears,
bears canfind sufficient food without spending much time inthe open and
thus are very difficult to find.In especially dryyears, theyforage widely, and
counts tend to behigher in those years.The data used forFig. 9.4 comefrom
the study repded by Knight etal. (1995). Further analysis ofthe datayields
an improved index and thus a smaller mean square. The variability inStey
sheep regression evidently results from environmental conditions. Boyd
(1974) described the pattern of laild-up for severalyears, followed byheavy
mortality under stress from wather and nutritional conditions. Only 7years
of data are available for the George Reserve deer data set, so it ismainly of
interest for the overall observed high rate wofcrease, and the curvature does
not seem to have a recognizable pattern.

Table 9.1 Sources and nature of data and scientific names for data used in Fig. 9.4

NAME NATURE OF COUNT SCIENTIFIC NAME SOURCE

ELEPHANT SEALS Births Mirounga Stewart et al. 1994
angustirostris

GRIZZLY BEARS Females with cubs Ursus horribilis arctos Knight et al. 1995

SOAY SHEEP Total count Ovis sp. Boyd 1974

GEORGERESERVEDEER Total Odocoileus virginianus McCullough 1983

MONK SEALS Beach counts Monachus schauinslani Gilmartin and Eberhardt 1995

MANATEES Totals Trichechus manatus  Eberhardt and O'Shea 1995

SEA LIONS Pup counts Zalophus californicus DeMaster et al. 1982

WOOD BUFFALO N.P. Total population estimate Bison bison Carbyn et al. 1993

BISON

FERAL HORSES Total counts Equus caballus Eberhardt et al. 1982

GRAY WHALES Population estimates  Eschrichtius robustus Breiwick 1994

SENECA DEER Reconstructed pop. Odocoileus virginianus Hesselton et al. 1965

ALE ELK Total counts Cervus elaphus Eberhardt et al. 1996

FUR SEALS (DEC.) Total counts Callorhinus ursinus

BROWN BEARS Spawning stream countsUrsus horribilis R. A. Sellers, pers. comm.

LONGHORN CATTLE Total counts Bos bos Fredin 1984

YELLOWSTONE ELK Aerial counts Cervus elaphus Houston 1982

RED DEER Total counts Cervus elaphus Clutton-Brock et al. 1982

BISON Total counts Bison bison Fredin 1984

MUSKOX Total counts Ovibos moschatus Spencer and Lensink 1970

SERENGETI BUFFALO Population estimates  Syncerus caffer Sinclair 1977

CALIF. SEA OTTERS Total counts Enhydra lutris

GRAY SEALS Births Halichoerus grypus Bonner 1975

CUSINO DEER Total Odocoileus virginianus Ozaga and Verme 1982

FUR SEALS (Inc.) Total counts Callorhinus ursinus Kenyon et al. 1954

PRYOR HORSES Total counts Equus caballus Garrott and Taylor 1990

The monk seal counts at Pearland Hermes Ref are highly variable
because the sealsoccupy anumber ofsmall islets spread overa sizable area
there and thus are difficult to reach and to count. Curvilinearity in Ei@nch
Frigate Shoals data likely result from incomplete tallies in the early years.
Evidence of curvilinearity in the Lisianski monk seal data (Fig. 9.5) seems to be
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characteristic ofmany ofthe declining populations, including bison in Wood
Buffalo National Park, and the @creasing fur seal population. In many such
populations, the causes of decline are unknown or imperfectly understood, and
likely vary over time, whereas arincreasing population often is doing so in
consequence of ampléood and other resources, andhus is likely to exhibit a
smooth pattern.
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Fig. 9.5. Logarithms of beach counts of monk seals on Lisianski Island.

Somewhat erratic growth patterns may, however, also be evident in
increasing populations, as ighe case wWwh manatees (Fig. 9.6). Very likely
some of thefluctuations result from conditions under whichthe counts were
made, inasmuch aghe counts may be ade by divers and at times inturbid
water (Crystal River).
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Fig. 9.6. Logarithms ofcounts of manateesat Crystal River (upper data set) andBlue
Springs (lower data points).
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It seems quite possible that data on the right side of Fig. 9.4 may
approach the circumstance where the fluctuations may largely be associated
with the stochastic behavior of the underlying birth and death processes. In
several instances (muskox and bison in Fig. 9.3, fur seals (increasing), and
Seneca deer), there is a suggestion of an oscillatory pattern in the deviations
from linearity. Such oscillations may be a consequence of a changing age
structure (Keyfitz 1968 gave the theoretical basis) and are suggested by
simulations of longer sequences of observations (Eberhardt 1981). Detection of
such an oscillatory pattern is aided by plotting deviations from fitted curves as
in Fig. 9.7, which shows the pattern for the muskox data of Fig. 9.3.

20 -

10 °

DEVIATIONS
°

-10 H
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Fig. 9.7. Deviations from the exponential curve fitted to muskox data in Fig. 9.3.

9.5 A test for significant deviations from regression using replicate points.

The test for significant deviations from linearity used in Section 9.4
depends onfitting a curve and testing tosee whether the improvement in fit
might simply be due to chance. In some cases,replicate counts may be
available, so that one canse thevariability within years totest significance
of deviations from linearity. The advantage here ishat we donot need to
specify an alternative model like the quadratic or culfvehich may very well
be the wrong model). Some counts of brown bears at spawning strpamside
an example (Fig. 9.8). In this case, the test consists of making the usual
analysis ofvariance totest for significance ofthe linear regression (@able
9.2), and hen using the pooled variance ofindividual observations within
years to estimate ‘“pureerror® (Draper and Smith981). The data for
calculation of pooled errorappear inTable 9.3. A sum ofsquares ofdeviations
from the mean isalculated for the data ineach yearwhere there are two or
more observations and these valuesare summed to give aroverall sum of
squares, which is subtractetom the "residual” sum of squares in Table€.2 to
yield the "lack of fit" sum ofsquares (i.e., the variability not accounted for by
"pure error"). The degrees of freedomused tocalculate pure error (32) is
similarly subtracted from the degrees of freedomfor residual error toget the
degrees of freedom used to calculate a meguoare for "lack of fit". An F-ratio
as shown in Table9.2 would be used to tessignificance ofthe lack offit, but
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the F-test forregression (1.14) is notsignificant, sothere is no ral point in
going on to test lack of fit, other than to illustrate the method.

449 BROWN BEARS
4.2 4 ‘ s o
[ J
- ® . o o s _»
= °
o 4.0 ®
o L ] [ ] °
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Z 3.8 °
y = 3.9872 + 9.3687e-3x R”N"2 = 0.029
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Fig. 9.8 Logarithms of counts of brown bears on salmon spawning streams.

Table 9.2 Test of significance for deviations from regression

df SS MS F
Regression 1 0.02415 0.02415 1.14655
Residual 39 0.82140 0.02106
Total 40 0.84555
Lack of fit 32 4753 0.01485
Pure error 7 0.3461 0.04944

Another example of variability of individualcounts is provided by some
gray whale data (Breiwickl994). In this case,replicate counts over timecould
not be made, as thevhales are counted as theymigrate past ashoreline
counting station. However, estimates ofsampling error are available (Table
9.4) and can be usedo assess themean square error obtained in loglinear
regression analysis ofthe data. Because the standard errors ofindividual
estimates wre calculated interms of number of whales, atransformation
needs to beused tochange to variability onthe logarithmic scale. Using the
delta method, we find:

V(In x) = V(x)(% )2 = Coef. var(x)

Plotting the coefficients of variion against the estimates shows little
evidence of correlation, sothe average coefficient may be aeasonable
estimate of overall variability. The squared value (0.0027) is substantially
smaller than the mean square about regression (0.0170) so it seems quite
evident that there is asignificant departure from linearity, even though the
guadratic and cubic mean squares are little different from the meansquare

from linear regression (Table 9.4). Inspection of the data (Fig. 9.9) suggests the
possibility that the population might have reached anequilibrium Ilevel.
However, the marked decrease iryears 4 and 5 suggestshe possibility of
shifts in the migration pattern.



Table 9.3 Data for computation of "pure error" for brown bear counts

Year Bears/hour

3

OO OWOWOWOWOWMOWMWMWMwWONN~N~N~NoCT OO hr_ADD,DWWWW

11

Sums 2386.0800

33.85
64.04
61.88
61.2
55.24
68.7
59.3
67.9
65.3
49.4
51.4
61.6
47.4
52.45
51.88
45.14
62
48.13
49.58
51.21
62.06
66.59
62.32
66.88
65.03
64.58
54.17
67.49
66.67
62.8
61
62.42
48.68
51.47
58.51
57.65
54.08
61.12
55.15
68.29
61.52

Logarithm Sum of Da. of

bears/hr
3.5219
4.1595
4.1252
4.1141
4.0117
4.2297
4.0826
4.2180
4.1790
3.9000
3.9396
4.1207
3.8586
3.9599
3.9489
3.8098
4.1271
3.8739
3.9036
3.9359
4.1281
4.1986
4.1323
4.2029
4.1748
4.1679
3.9921
4.2120
4,1998
4.1400
4.1109
4.1339
3.8853
3.9410
4.0692
4.0544
3.9905
4.1128
4.0101
4.2238
4.1194
166.2194

gluaresfreedom
0.2819 4
0.0134 3
0.0400 4
0.0572 4
0.0051 5
0.0311 5
0.0238 4
0.0229 3
0.4753 32

9.16
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Table 9.4. Estimate of total numbers of gray whales along with standard errors
of estimate and coefficients of variation.
YR ESTIMATE S.E. COEF.VAR. LNESTIMATE

1 12921 964 0.075 9.4666

2 12070 594 0.049 9.3985

3 12597 640 0.051 9.4412

4 10707 487 0.045 9.2787

5 9760 524 0.054 9.1860

6 15099 688 0.046 9.6224

7 14696 731 0.050 9.5953

8 12955 659 0.051 9.4692

9 14520 796 0.055 9.5833

10 15304 669 0.044 9.6359

11 16879 1095 0.065 9.7338

12 13104 629 0.048 9.4807

13 16364 832 0.051 9.7028

18 21443 1182 0.055 9.9732

19 20113 927 0.046 9.9091

21 20869 913 0.044 9.9460

26 17674 1029 0.058 9.7798

27 23109 1262 0.055 10.0480
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Fig. 9.9 Logarithms of counts of gray whales. Data from Breiwick (1994).
9.6 A test for linearity based on the lowess method

The test for deviations frominearity based onfitting a quadratic curve to the
data uses the difference between sum of squared deviations aboutodthinear
regression line and that about theguadratic curve, and tests thisdifference
against the regression mean square about the quadratic, using an &uedt.
a test can also be usedwith the cubic gquaion (or any suitable alternative),
with the only change being that of reducing the degrees of freedom tadjust
for the extra parameters fitted. An alternative is toconsider curves fitwith a
"locally weighted regression"” technique(variously called "loess" or "lowess",
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and due to Cleveland 1979). Weighted linear regressions are fit at each point on
the graph (e.g., if the datapan 30 yearsthen suchregressions are fit ateach

of the 30years) by selecting data points in the immediate neighborhood of
each point on the x-abcissa. Thmumber of points in each sucheighborhood

is usually taken to beabout 30% of the total number of observations.Weights
diminish by a cubicfunction, sopoints very near tdhe selectedpoint get by

far the most weight. The individual fittedegression line determines only the
y-value for the selected abcissal value. In effect, teehnique behaves much

like a moving average, but has various advantages.

In principle, one might extend the test of linearity to the lowess
technique, but the fitting procedure issuch thatthere is noway to calculate
an effective number of degrees of freedom. Wean, however, utilize the
bootstrapping technique teee whether the two sums ofsquares (about the
loglinear regression and about the Ilowesscurve) ®em likely to differ
significantly. Two approaches tobootstrapping regressiondata have been
described byEfron and Tibishirani (1993). One approach depends ontaking a
random sample, with replacement, ofthe observed data point-pairs and
recalculating the regression line. This method may not work well with dla¢a
considered her unless thereare asubstantial number opoints. Wth fewer
data points, repeated selection dhe samedata point occurs oftenenough so
that the lowess process fails. In the second approach, one fiegrassion line
and calculatesdeviations from the line. Radom samplesof the deviations are
then taken, again with replacement, and these deviations are then added to the
values calculatedfrom the original regression line at each of theobserved x-
values. Regression lines are hen calculated from the new data sets.This
method works satisfactorily with a limited number of data points, and thus
might be used tocompare a lolgnear fit with one obtained by the lowess
method.

9.7 Confidence limits from bootstrapping

The usual linear regression model assumes anormal distribution of
deviations about the regression line as a basis forcalculating confidence
limits and tests of signifctance. The logarithmic transformation does seem to
usually result in a symmetric distribution odeviations from regression, but it
may be worthwhile to use bootstrapping to obtain confidence limits that do not
depend onthe assumption of normality. Asioted in Section 9.6, Efron and
Tibishirani (1993) describe twoapproaches tobootstrapping inregression.
One, which they call'parametric" bootstrapping,depends onfitting the usual
regression model tocalculate individual deviations from regression, and then
taking random samples of these deviations with replacement (same saigde
as the original data) and adding thset of deviations tothe y-values predicted
by the original regression equation to generate a new set of "bootdsatg. A
regression line is fit to thisdata and theparameters recorded. Dmng this, say,
1,000 times provides the basis for calculating confidence limits on the
parameters. For 95% limits we use the 25t and 975th ordered value of a
parameter. The original sedf x-valuesis usedthroughout. This approach thus
makes it feasible towork with small data sets -- say 5 to 1R,y pairs. A
disadvantage is that the method assumes that the linear model is exactly true.

An alternative ("nonparametric" regression bootstrapping) takes n
random samples Wwh replacement ofthe x,y pairs and computes new
regressions. The disadvantage isthat, in small data sets, the sample
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observations maypile up on a few x-values, vyelding stange results. The
advantage ighat the method doesnot assume thelinear model holds exactly.
The two methods weretested on anumber ofdata setsfrom increasing and
decreasing populations, and compared \th confidence limits obtained from
the usual regression equatiormhe nonparametric approach gave results (Fig.
9.10) that agree veryell with the usual95% regression limits on slope of the
loglinear regressionline. Most of the samples had n ®0, but two feral horse
populations had only 5and 8 observations, respectively (Table 9.5). The
nonparametric interval for brown bears issomewhat smaller thanthat from
the standard regression calculations, and this may reflect the fact that the
brown bear population maynot have been chaing over the years studied
(Fig. 9.8).
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Fig. 9.10 Comparison of 95% confidence intervals on the regression slope (b) calculated by
ordinary regression methods to those obtained from nonparametric regression.

Using parametric regression bootstrapping with the same data sets
gives confidence limits appreciably smaller than those from standard
regression (Fig. 9.11). The question of which set of limits to use needs further
consideration, but the good agreement of the nonparametric and standard
regression limits might lead one to prefer either over the parametric
regression, particularly in that these two approaches are more conservative
(wider limits) than the parametric approach.

When sample sizes are, say, 10-15 or larger, a worthwhile approach is to
compute confidence Ilimits both by nonparametric regression bootstrapping,
and by the usual approach (readily available in EXCEL). If they agree, then
there should be little reason for concern. Both of the bootstrap methods
support the notion that regression estimates of population rate of change are
unbiased. Efron and Tibishirani (1993) indicate that close agreement between
the mean of bootstrapped data and the value obtained from the original
approach indicates an unbiased estimate. Table 9.5 shows that the 3 methods
give essentially the same values for rate of increase.
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Fig. 9.11 Comparison of 95% confidence intervals on the regression slope (b) calculated by
ordinary regression methods to those obtained from parametric regression.

Table 9.5 Slope estimates from log-linear regressioncompared tothose from bootstrap
samples ofparametric and nonparametric regressionsThe close ageement indicates
unbiased estimation (Efron and Tibishirani 1993).

PARA NPARA

SPECIES SLOPE MEAN MEAN

OTTERS 0.0521 0.0523 0.0524
GRAY WHALES 0.0257 0.0259 0.0259
CRYSTALR 0.0968 0.0971 0.0975
BLUE SPGS 0.0793 0.0791 0.0793
SENECADEER 0.4115 0.4151 0.4138
MUSKOX 0.1463 0.1461 0.1465
GRAY SEALS 0.0741 0.0742 0.0743
BISON 0.2068 0.2068 0.2064
FUR SEALS 0.0824 0.0825 0.0833
BEATY HORSES 0.2447 0.2438 0.2438
LISIANSKI -0.0260 -0.0260 -0.0257
PRYOR HORSES 0.1854 0.1855 0.1854

BROWN BEARS 0.0167 0.0165 0.0159
FUR SEAL DEC -0.0263 -0.0264 -0.0261

9.8 Alternative estimates of rate of population change

In Chapter 12 wo very simple models Gedion 12.4) are proposed for
evaluating populations from which known numbers of individuals are
removed at various ties. The log-linear approach ofthe previous sections
(eqg. 9.2) isnot useful in such circumstances, so it is worthwhile toonsider
alternative ways to establish rates of change. These make use of ratios of
successive observations. Wdirst consider usingthe methods for data wthout
removals, and thus can compare them with the regressipproach. The basic
idea comes from the simple relationship (eq. 9.1):

N=ANt1
where A is the multiplier needed to project a population at time t-1 to time t (we
assume an interval of one yeawith observationstaken atthe same timeeach
year). If we want to estimatex from a sequence ofyears, we canconsider 3
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ratio estimates (Eberhardt1987) where X represents population size in one
year and y the size in the next year:

. . n Z(YilXi)
The mean of individual ratios A == n (9.7)
. A DY
Ratio of sums =T, (9.8)
. . A 2YiX|
Regression through the origin A= T2 (9.9)
Xj

Because the individual observations other th#re first andlast appear
twice in a sequence of years, one can get spurious resultstaiistical analysis
of such data (Eberhardt 1970). We thussort tobootstrapping here. Using the
data previously used toevaluate the regression approach(Table 9.5), 1,000
bootstraps wre used with the estimates of eqs(9.7) through (9.9). Bootstrap
bias calculatins were made, along with comparisons with the rate ofchange

from the regression method (using A =eb, where b is slope of theloglinear
regression). All 4 sets of estimates were highly correlated (Table 9.6).

Table 9.6. Correlations between four methods of estimating rate of increase.

LOGLINEAR MEAN SUMS REGR
LOGLINEAR 1
MEAN 0.992 1
SUMS 0.983 0.986 1
REGR 0.957 0.961 0.990 1

The mean of theindividual ratios had the smallest relative bias. and
deviated the least from the loghear regression estimates. Relative bias was
calculated as:

. Aorig - Aboot

Bias = Norig (9.10)
where Appotis the mean of1,000 bootstrap estimates and Aqrig is the estimate
from log-linear regression. The average of absolutevalues for relative bias
was 0.020 for the method of neans [eq.(9.7)], 0.107 for method of sums
[€q.(9.8)], and 0.130 for the regression method [eq.(9.9)].

Confidence intervals (95%) were also calculated from bootstrap results,
but were much wider than the regression estimates and poootyelated with
those estimates (Fig. 9.12). Excluding the Beaty horse data (n 8}, the ratio of
confidence intervals (Fig. 9.12) wasabout 3.5 to 1, i.e., confidence intervals
from the mean ofindividual ratios [eq.(9.7)} were nearly 4times wider than
those from log-linear regressions. This raises anissue that needs further
attention. Why should the bootstrapping confidence intervals be sonuch
wider than those from linear regression? The answer appearBetin the fact
that bootstrapping is basedn random samples withreplacement ofindividual
observations. In this case, we have to deal with successive pairs of
observations in order to get thmatios, so thepairs were bootstrapped, and this
gives unsatisfactory results, as shown in Fig. 9.12.
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Example 9.5 A census using ratio estimation

An example of ratio estimation in an actual census is provided by studies of the
abundance of the sea otter (Enhydra lutris) along the California coast. Sea otters
then occupied about 150 miles of the California coastline, and are almost always
found swimming or resting (in kelp beds, usually) just off the shoreline. A
number of aerial censuses were conducted by employees of the California
Department of Fish and Game. Since only a fraction of the otters present are
observed in aerial counts, an ingenious use of auxiliary counts (devised by
D.J.Miller) was used to correct the aerial counts by what amounts to ratio
estimation. On a sample of shoreline areas, observers on vantage points (well
above sea level, where possible) made counts on well-defined areas. These were
then used to correct aerial counts of the same areas.

In later development of the method, aerial photos were made in advance of the
census to map kelp beds. Using the maps, shoreline ("ground truth") counters
located animals in a well-defined and readily visible area, and made a record of
those animals present in the sample areas at the time the aerial observers
passed the counting site. The aerial observers also plotted all otters seen on
identical maps. As soon as a day's flight was completed, the aerial and ground
observers went over the maps together to establish which animals were seen by
both air and ground observers, and which animals were not seen from the air.
Aerial counts were made over the entire coastline occupied by otters, so the data
can be used in a ratio estimate (Sec. 4.12).

The estimated total otter population is:

Sv

where YR is the estimate of total otter population, and Xt is the
total aerial count. The ground counts (yj) are summed over the

sample (n) of ground-truth areas, and divided by the sum of the
aerial counts (xj) on the sane areas. If it is assuned that the
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ground counts are made without error (an assunption that needs
further checking), then the data conform to the standard
conditions for ratio estimation with the exception that X7 (the
total aerial count) is subject to sanpling error. Calculations
are otherw se straightforward, and as given in Ch.4. Table 9.5
gives data from the 1974 survey. A total of 897 otters were
counted fromthe air, so we estimate the total popul ation from
t he equation given above as:
A 332

R =502 897 = 1474
and find the squared coefficient of variation to be:
A 1-f 1
CV2(YR ) =in—l [cyy + Cxx - chx] =371 [1.966 + 1.216 - 2(1.4229)] =
0.0109
where we take f = 0, since an accurate value is not avail able.

However, an appreciable segnent of the coast was included in the
ground counts, so that use of f would be appropriate here, if it
coul d be cal cul at ed.

Confidence limts are readily cal culated by computing a standard
error as (.0109) 1/21474 = 159.89, and usi ng Zos = 1.96 giving:

YR = * Zos s(YT) = 1474 *  1.96(159.89) o,
1172 < YR < 1776 sea otters.

Aerial survey (xj) and ground counts (yj) of sea otters along the California coast.

June 25 June 26 June 27

X Y- XM X Y
2 4 1 6 1 1
1 1 9 10 6 14
0 4 0 19 5 7
0 6 13 19 1 6
37 50 12 8 4 5
6 9 5 8 2 8
9 10 6 6 2 1
3 3 5 9 37 47
1 1 0 5
8 13 1 1
0 8 11 14
14 29

67 109 77 134 58 89
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9.9 Criteria for regression fits

Testing for curvilinearity in regression lines was dscussed in some
earlier sections (Sec. 9.3,Sec. 9.5). Wlien onefits a regression line like those
summarized inFig. 9.4, it isimportant tohave other waysto evaluate the fit.
Regression mean squares providea useful measure ofvariability about the

line, and can besupplemented bythe widely-used R criterion. For a simple
regression line with one independent variable, the square root of this

quantity gives the well-known correlation coefficient, and R is perhaps
better known when used in the multiple regression analyses that will be

_o\2 _W\2
RZ - Z(yl >_/)2 :1_ z(yl %)2 (911)
(Y -Y) (Y -Y)
described in dater section. However,the simple linear regressions serve to
illustrate the interplay between regression mean square and R The R2
criterion is:

where y is the independent variable, 7y is the mean ofthe y; and /§/ is the

"predicted" value from theregression equation. Often, R? is described as the
proportion of the variance in the independent variable "accourftel by the
fitted regression line. The two expressions ineq.(9.11) areconnected by the
basic identity in the analysis of variance in regression, i.e.,

Byi-YR =2(Vi-Y2 o+ E(yi-Vi)?
Total S.S. = regression S.S. + Residual S.S.

In eq.(9.11), theleft-hand form is that commonly used (Draper and
Smith 1998:138). Theequivalent right-hand exprssion was recommended by
Anderson-Sprecher (1994) because it provides @aonvenient interpretation of

R2 written as:

_ RSS(full)
R=1 "RSS(reduced)

where RSS(full) denotes the regression sum of squares for the full model and
RSS(reduced) can be interpreted as the sum of squares for the model reduced to

its minimal form, i.e., the expected value of y i estimated by —y One
advantage ofthis expession isthat it emphasizes that model comparisons

using R should be rmade with nested rmdels, i.e., a series ofregression
equations with two or more independent variables sothat the number of
parameters p = 2,3,4, ... . Another advantage is that

RSS(full)
RSS(reduced)

1-2R

states thefraction of variability not accounted for by regression. Because at
least stochastic fluctuations are always pesent intrend data, this expresion

serves as a reminder that? Rcannot become unity.

When R is large, it is evident that theegression line does good job of
predicting the counts. This does notnecessarily demonstrate validity of the
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index assome extraneous factor may beexerting amajor influence on the

counts. Usually, however, a high R is reassuring. A key element in
demonstrating validity of an index is anindependent &timate of the trend.
Such an estimate may be available from reproductive and survival data. Thus if
two sources, trend index and reproductive aswdrvival data produce much the
same estimate of\, that result is particularly reassuring.

Confidence intervals on parameters and mredictions from regression
lines depend on the assumption of a normal distributiondetiations from the
regression line with constant variance about regression. Wen population
data are being considered,this may be anuncertain assumption. It isthus
desirable to resort to théootstrapping technique(Efron and Tibshirani 1993)
as a check on confidence intervals generatedby regression theory. For
regressions based on modest numbers of data pointparmmetric regression”
bootstrap isrecommended. The usual regression line is fitted and deviations
from that line are bootstrapped. That is, at led9200 random samples ofsize n
(n =no. of points used to fit theregression line)are drawn from the set of
deviations, vith replacement, and are used ta@onstruct new regression data
sets (by adding the sample ofdeviations tothe estimated regression lie). A
new regression line is fitted to each suchdata set andused to etimate the
parameter of interest (usually A). Confidence intervals are ten obtained by
counting in Bx/2 values from either end of the generated distribution of
values, where B =no. of bootstrap samples and o denotes the chosen level of
significance (oftena = 0.05).

If bootstrapping isused, itfurnishes an stimate of bias for the estimator of
concern from the equation (Efron and Tibshirani 1993):

N N x N
biasg =6 " (") - t(F) (9.12)
Here,é\* (") is the mean of the bootstrap estimates of the parameteintefrest

(often A) and t(AF) denotes the same pameter estimated from the original
data. Results from this criterion may thus yield an indication prafblems with
the trend index.

How should these twocriteria be used? Aninterpretation of R was
given earlier as:

_ RSS(full)
=1 "RSS(reduced)

Here RSSdenotes aegression sum of squares. The numerator pertains to the
fitted model, while the denominatoconsists of the variancebout the mean of
the observations (thus'reduced" to aminimum). Wsually the samplesize is
large enough so that the ratio amounts to comparing wgance ofthe fitted
model to that in the data (i.e., theegrees of freedomare not different enough

to matter much). Hencét is clear that RZ and the regression mean square are

closely related. The relationship can be examined by plotting (Fig. 9.18pa R
regression mean squares for the data of Fig. 9.4.
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Fig. 9.13. Relationship between?Rand regression mean square for data usedFiig.
9.4. Various sets of points described in text.

The solid points show what seemslikely to be the expected relatnship

between R and the regression mean square.The cluster atthe right top
contains those data sets where there ®gmificant curvature which inflates
the regression mean square. Tip®ints represented byppen circles represent
cases where there appears to be a pattern tire deviations which is quite
dramatic in some instances. Plotting deviations from regression, as
recommended earlier (see Fig. 9.7 ad Fig. 9.14), will usually make thenon-
randomness of the deviations evident. All tfe cases showrhere are based on
simple log-linear regressions. Very likely a detailed investigation of the
underlying circumstances mightturn up significant auxiliary variables.
Considering the solid points at the left of the figure, it appears thast of the

variability is accounted for by the simple regression. R thus appears most
informative in this situation.

Evaluating the pattern indeviations from regression can be aided by
the Durbin-Watson test (Draper and Smith 1998). This simple test depends on
the fact that the squared difference between successive deviationswill
approximate the variance ofthe deviations if the pattern of deviations is
random. The test is:

s (ey - €y-1)2
d = (eu u-1) (9.13)
> eu2

where the summation inthe numerator runsfrom u =2 to n, and that in the
denominator runsfrom 1 to n. It can beshown that the ratio, d, has an
expected value of 2 under a randopattern. Draper andsmith (1998) notethat
0< d<4, and givetables ofsignificant deviations from the expected value of 2
for different sample sizes. Various statistical packages producethe Durbin-
Watson test on residuals, but the test is easy t@ompute and thus worth
calculating directly once one has theresiduals from regression (readily
available wth the spreadsheet regressiorcalculations). Three of the sets of
data in Fig. 9.13 show significance at the 1% level from the Durbin-Watgst.
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The pattern ofdeviations for these three species appears inFig. 9.14,where
the correlation of successive observations is quite evident.
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Fig. 9.14 Pattern of deviations from loglinear regression for 3 species. All 3 sets of data
are significant at the 1% level with the Durbin-Watson test for serial correlation.

The results above thus suggest several steps in appraising loglinear
regressions of trend data:

1) Test the data for curvilinearity.

2) Compute the regression mean square ard R
3) Examine the pattern daleviations from regression over time, and calculate
the Durbin-Watson test..

It may be helpful to compare the results with the data ofFig. 9.13. Most
of the datapoints there conform tothe above stepsput not all. Three of the
open circles (Kure monk seals, San Miguel sea lions and gray whales) do not fit



9.28

in, but plotting the residuals suggestdhat the data arequite erratic, andthat
there may be some other factors involved that need tdubdher investigated.
Significant curvilinearity (3 points on the upper right of Fig. 9.13, Crystal
River manatees, FrenchFrigate monk seals, and GeorgeReserve deer) also
indicates aneed tolook further atthe data,inasmuch asthe curvilinearity
may well indicate asignificant change intrend. Table 9.7 gives the data on

species shown in Fig. 9.13. The very hig# Ralues shown by anumber of the
data setssuggest that the variability is mainly a function of stochasticity.
Bison, musk oxen, Cusino deer andPryor wild horse populations were
essentially counted in their entirely, while the Seneca deepopulation was
reconstructed from removals that were known almost completely.

Table 9.7 Data on loglinear regressions used in Fig. 9.17. Data orderea@gbgssion mean
squares. Population sizes are rough estimates in a number of cases.

SPEQ ES NUMBERS O0BSNS SLOPE Lambda MSreg R-sq
R ZZLY BEARS 400 18 0.039 1.040 0.068 .4009
SQAY SHEEP 1000 20 0.026 1.026 0.062 .295
GEORGE RESERVE DEER 70 7 0.488 1.629 0.061 .956
PEARL & HERMES MONK SEALS 150 16 0.050 1.051 0.052 .606
FFS MONK SEALS 600 22 0.062 1.064 0.048 .882
CRYSTAL R VER MANATEES 150 21 0.097 1.102 0.043 .912
LI STANSKI MONK SEALS 300 35 -0.029 0.971 0.036 .714
LAYSAN MONK SEALS 300 34 -0.034 0.967 0.028 .812
SAN M GEL SEA LI ONS 8000 15 0.064 1.066 0.025 .603
WD BUFFALO N P. BI SON 5000 19 -0.052 0.949 0.021 .849
BLUE SPRINGS MANATEES 40 19 0.079 1.082 0.021 .92
BEATY HCRSES 400 8 0.245 1.277 0.018 .959
GRAY WHALES 15000 18 0.026 1.026 0.018 .718
SENECA DEER 400 11 0.411 1.508 0.017 .992
ALE HK 70 11 0.165 1.179 0.015 .956
FUR SEALS ( DECREASI NG 180000 24 -0.026 0.974 0.013 .851
KURE MONK SEALS 100 12 0.026 1.027 0.013 .443
LONGHORN CATTLE 20 7 0.302 1.353 0.010 .981
YELLOASTONE ELK 7000 8 0.191 1.210 0.009 .964
RED DEER 1600 22 -0.010 0.990 0.008 .354
Bl SON 160 14 0.207 1.230 0.008 .99
MUSKOX 120 15 0.146 1.157 0.004 .991
SERENGETI  BUFFALO 50000 11 0.064 1.066 0.003 .969
CALI FORN A SEA OTTERS 1600 13 0.052 1.054 0.003 .94
GRAY SEALS 1200 16 0.069 1.072 0.003 .975
QUSI NO DEER 80 5 0.370 1.448 0.002 .995
FUR SEALS (I NCREASI NG 130000 12 0.082 1.085 0.002 .984
PRYCR HORSES 120 5 0.185 1.204 0.000 .99

9.10 Using auxiliary variables with trend data

In some cases, the use alixiliary variables mayserve to reduce the
regression mean square,i.e., we addindependent variables other than time
and use amultiple regression equation. One such model was used tastudy
trends in manatee numbers by Garrott aét(1994,1995). Theyrepresented the
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expected number of manatees counted atany given site under awrage
conditions at time t adM(t), and assumed M(t) remains constant over the
annual counting period (given average conditions)and denoted it as Mfor
the ith year. M is assumed to beroportional tothe true population level.
C[t,X(t)] then represents the expected number of manatees counted at time t,
given conditions Xt), where X(t) is avector of cowariate values prevailing at
time t, leading to the model:

C[t.X(0)] = M RILX()] (9.14)

where the function R( ) is a rate function thatakes the valueunity when
conditions are average. Under good counting conditions R( ) >1 andunder
poor conditions R( ) < 1. If the rate function is assumed to be of the form
RIt,X(1)] = exp[x(t)B]
where Xt) is the vector of covariates and B is a vector of regression
parameters, then taking logarithms (base e) gives:
In C[t,X(1)] = In Mj + x(1)B

One can hen use multiple regression tostudy the effect of various cwariates
(auxiliary variables). The gemral formulation iswidely used in survival
studies as "Cox's proportional hazards model" (C®72) andhas also been used
to take auxiliary variables into account in population estimationprocedures.
The main interest ineq.(9.14) is forstudying populationtrend. In order to do

so, Mj needs to beexpressed as function of time, usually as M =NgAt sothat
the final equation becomes:

INCt)=InNg + tInA + x(t)B (9.15)
Compare this with eq.(9.1) and (9.2).

The underlying model is thus assumed to have the form:
Y Bo + B1X1 + B2Xx2 + B3X3 + . . . +Bp-1Xp-1 (9.16)

where y = In C(t), x =t,Bo =In No, B1 = INA, X2 ... X-1 are the
auxiliary variables, and there are p parameters to fit with multiple
regression.

The use ofregression mean square, R and a bias criterion were
discussed inSec. 9.9.Two further criteria have beenused for evaluation of
models, Mallow's Cp formultiple regression models (Draper and Smith 1981)
and Akaike's Information Criterion (AIC) for models where likelihood ratio
tests areappropriate (Lebreton etal. 1992, Burnham and Anderson 1996). The
Cp statistic is calculated as (Draper and Smith 1998:332):

Cp = RSSp/ - (n-2p) (9.17)

where RS§ is the residual sum of squares in a multiple regression mbdeled

on p parameters, n ishe number of observationsand ¢ is the residual mean
square from the equatiowith the largest number of parameters ithe set of
equations evaluated.The method thusdepends onhaving a range ofuxiliary
variables availablefor study andessentially assumes thatthis set of variables
includes those involved in the "true" underlying regression model. Draper and



9.30

Smith (1998:331) suggested opfing residual mean squares againstthe number
of parameters (p)for a sequence ofegression models as a way tosémate an

asymptotic value that may approach the "true" valw® which is then used as

s2 in eq.(9.17). They noted that large samples and a sizable number of
candidate variables should be available for this approach to be valid.

Burnham and Anderson (1996) gave the Akaik&IC) criterion as: AIC =
-2(log-likelihood) + 2pwhere p is againthe number of parametersand the
log-likelihood ratio is calculated from the maximum likelihood estimates of
parameters intwo candidate mdels. In theory, the method requires that a
"global" set of models beidentified andthat this set contains the "true" model
according to Burnham and Anderson (1996). A seriesamplications ofAIC for
survival analysis was provided by Lebreton etal.(1992) and Burnham and
Anderson (1996) provided afurther example. Because regression models are
used here foranalysis ofindices, the Cpstatistic seems useful. Burnham and
Anderson (1996) discuss the analogous features oOAIC and Cp. Much more
detail isavailable inthe book by Burnham and Anderson (1998) where it is
claimed thatthe set of models considered doesiot need toinclude the “true”
model.

Example 9.6 Trend indices with auxiliary variabl es.

Two exanples of trend indices of the use of auxiliary data
illustrate the approach of the previous section. One uses the data
on manatees studied by Garrott et al. (1994, 1995). The other
considers data on the Yellowstone grizzly bear population.
Background data for both species appear in the Case Histories.

Garrott et a. (1994, 1995) evaluated a sizable nunber of
potential auxiliary variables, but it appears that year and DD10
(cumul ative heating days summed for 10 days previous to the aerial
counts of nmanatees in warmwater refugia) may serve as well as
|arger sets of tenperature variables (Eberhardt, Garrott and
Becker1999). The nodel assuned for the study was the "proportional
hazards" nodel of eq.(9.15), fitted by nultiple regression
[eq.(9.16)]. R? was about 0.60 for several versions of the overall
multiple regression analyses. A difficulty with the results is
that the estimated rate of growmh of the manatee popul ation
exceeded that believed likely (Eberhardt, Garrott and Becker
1999), and estimated from reproductive and survival dat a
(Eberhardt and O Shea 1995). An alternative approach used
regression of repeated counts wthin years on DDI0O for a
covari ance adjustnent (Snedecor and Cochran 1967), as detailed by
(Eberhardt, Garrott and Becker 1999).

The alternative approach suggested that the population
remai ned rel atively constant over recent years, in accord with the
conclusion of Eberhardt and O Shea (1995). Plotting deviations
fromthe multiple regression fit (Fig. 9.15) suggests that sone
factor not accounted for in the nodel may have influenced the
trend. As a check on the use of ordinary multiple regression, a
nonparanetri ¢ bootstrapping study was conducted. There were 103
data points in the nanatee data set. These were randomly sanpled
by taking n = 103 random sanples with replacenment and cal cul ating
a nultiple regression on each such sanple. Doing this 2,000 tinmes
yi el ded estimates and percentile confidence linmts essentially the
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sanme as those given by ordinary nultiple regression. The usual
regression program gave an estimate of 0.0958 for the regression
slope with a 95% confidence interval of 0.074 to 0.118 while
boot strapping produced a nean estimte of 0.0953 wth 95%
confidence interval of 0.076 to 0.115. The bias estimte of

N
eq.(9.12) is thus bias g = 0.953- 0.0958 = - 0.0005, so there is

no evidence from the bootstrapping about problems wth the
regressi on approach.
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Fig. 9.15 Deviations from a multiple regression model fitted to manatee data.
The Yell owstone grizzly bear data yielded higher values of
R2 and used 3 auxiliary variables: year, frequency of sighting of
given famly groups, and April snow depths in the previous year.
The index variable was counts of "distinct famlies", i.e., of
ferales with cubs-of-the-year seen in the summer (Knight,
Bl anchard and Eberhardt 1995). The nodel thus was:
In(count)=Bo+B1(year)+p2(frequency)+p3(snowpack) (9.18)
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Fig. 9.16. Observed (solid points) and predicted values (open circles) of logarithms of
counts of "distinct families" of grizzly bears in Yellowstone National Park and environs.
Aberrent 1985 value is circled.
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This nodel yielded an RZ2 of 0.75 using data from 1976 to
1997. Conparison of values cal culated fromthe regression equation
and observed counts (Fig. 9.16) suggests that the observed val ue

in 1985 was somehow aberrant. Wthout this value, RZ = 0.85. A
variety of additional variables were examined in nultiple
regressions, including squared terns for year and frequency of
sighting as used in the manatee studies of CGarrott et al. (1994,
1995). None of these additional variables appeared to provide
useful fits. Mallow s Cp [eq.(9.17)] was calculated (Table 9.8) by

pl otting s2 against nunber of wvariables included in the
regression as recommended by Draper and Smith (1998:331). This

suggested a value for s2 (0.03) from the trend of calculated

regression nmean squares. Table 9.8 also includes 1 - RZ as a
neasure of the proportion of variance not accounted for by the
regression lines. The three nmeasures show essentially the sane
trend with the nunber of paraneters estimated (p). Another
reassuring aspect of the revised index is that there is now little
evi dence of curvilinearity in the residuals (Fig.9.17) in contrast
with an earlier index calculation using only year and frequency of
capture (Eberhardt, Garrott and Becker 1999). There were no
significant correlati ons between the i ndependent vari abl es.

Table 9.8. Variation in three measures of regression model adequacy with increasing
number of parameters (p) included in the model. Data for a Yellowstone grizzly bear
trend index fitted to models of the general form of eq.(8).

p s? 1-R? G
2 0.053 0.36 15.6
3 0.039 0.25 7.6
4 0.039 0.23 7.2
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Fig. 9.17. Deviations from regression for the grizzly bear data of Fig. 9.16.

Bootstrapping was used to check the multiple regression
calculations, with essentially the sane results as for the nanatee
data. The vyear coefficient was 0.0287 with a 95% confidence
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interval of 0.017 to 0.040, while the nean of the bootstrap
calculations (2,000 replications) was 0.0291, with 95% confi dence
interval of 0.018 to 0.040. The bias estimte of eq.(9.12) is thus
0.0291- 0.0287 = 0.0004, so there is again no evidence from
boot strapping of problems with the regression approach. As wth
the manatee data, the bootstrap frequency distribution was
symmetri c about the estinate.

Exanmple 9.7 An alternative approach to index nodels.

A different prospect for assessing trend data can be
illustrated by using data on wolves and noose from Isle Royale
(Peterson 1995), and a difference equation nodel used by Eberhardt
(1998). The nodel is:

'
Vi=1[1+rq] Vi1 - %]Vt-lz+1 - CHt-1 (9.19)

Where Vi denotes ungulate prey abundance at time t, and H_.1
denot es predator abundance the previous year, K is the asynptotic
popul ation level of prey, z is a constant for the generalized
logistic equation (Eberhardt 1987), rq is the maxinmm rate of

i ncrease of prey, and ¢ is the predation rate (prey taken per wolf
per year). The above npdel can readily be fitted by multiple
regression, giving the results of Fig. 9.18. DelGudice et al.
(1997) indicated that the npose population on Isle Royale was
inmportantly affected by an epizootic of the wnter tick
(Dermacentor al bipictus) in 1989, so only the data series through

1988 is used here. R2 for the regression fit is 0.91, suggesting a
good fit.
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Fig. 9.18. Fit (solid line) of eq. (9.19) to observed data on moose (solid points) and
wolves (broken line) on Isle Royale.
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Boot st rappi ng was again applied to try to check validity of
t he approach. However, the structure of the nodel forces use of
"paranetric" bootstrapping, in which deviations from the fitted
nodel are randomy sanpled with replacenent, attached to the nodel
fitted to the original data, and refitted. This was done 2,000
times. Using nonparanetric bootstrapping here poses problens,
because the nodel is fit to observations taken sequentially.
Results of the bootstrapping study appear to support the nodel,
gi ving nean values for the 3 coefficients close to those fromthe
original fitting. The original fit estimated A= 1 + rq as 1.309

and boot strappi ng gave 1.314. The second coefficient in the nodel
was -0.00126 fromthe original data while bootstrapping yielded an
average of -0.0013. The third coefficient (c) was -7.626 in the
original fit, while bootstrap data averaged -7.651. Frequency
di stributions of the bootstrapped data gave wi der 95% confidence
intervals than nmight be desired. Those for A were about 1.19 to
1.44, and the interval for the noose kill per wolf (c) was -3.78

to -11.80. The interval on RZ was sonewhat nore satisfactory,
being 0.88 - 0.96. The Durbin-Watson test on residuals was 2.01,
indicating virtually no deviation from randommess. A plot of the
deviations (Fig. 9.19) does, however, enphasize the variability
evident in the fit to the later years evident in Fig. 9.18.
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Fig. 9.19 Residuals from the multiple regression fit of eq.(9.19) to Isle Royale moose
and wolf data.

One mght thus be inclined to suppose that the nodel of eq. (9.19)
may give a useful representation of the data. Unfortunately, the
boot st rappi ng exerci se nay be of uncertain utility here, inasnuch
as Efron and Tibshirani (1993) point out that "paranetric"
boot st rappi ng results depend on the assunption that the underlying
nodel is correct, and this may not be true here. One problemis
that the nodel mmy induce correlations, by virtue of the fact that
all but one of the observations appears both in the dependent
variable (Vt), and in the first independent variable (V{-1).

1
0
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The sane kind of problem exists in other analyses of the
data, but arises in a different way. Mch et al. (1987) used
[inear regression to relate snow accunulation to nmoose abundance
on Isle Royale. Their results were critiqued by Messier (1991),
followed by a response by MRoberts et al. (1995). The data were
again studied by Post and Stenseth (1998). The difficulty is that
t hese anal yses depend on the ratio of successive popul ation sizes
(see, for exanple, eq.(1l) and (2) of Post and Stenseth, 1998).
Using such a ratio can induce correlations, as was pointed out by
Watt (1964,1968) and further illustrated by Eberhardt (1970).
Consequently, analyses should sonehow use only the current
observations as the dependent variable, and should not include the
popul ation index as an independent variable in the regressions.
Further study is thus needed to deternmine just how to proceed.
Mech et al. (1987) show various correl ations between reproductive
paranmeters and snow depth, so the question is not one of whether
wi nter conditions have an effect, but is rather one of the inpact
on popul ati on trend.

9.11 Catch-effort methods

The catch-effort methods have been developed as way to use
information gained inthe course ofexploiting a population. Byfar the main
use has been ironnection JWth commercial fisheries. The methods have had
very little use in appraising either sports fishing or hunting, although
presumably suitable data has been increasingly available from surveys of
hunting and fishing. Very much the sametechniques are also encountered
under the title of "removal nethods", mostly in situations where animals are
killed by traps, or removed from the study area for some reason.

Use of catch-effort methods instudies of exploitedpopulations depends
on the prospect forobtaining large volumes ofdata in return for arelatively
small investment of research or management funds. Complications are,
however, introduced by the nature of commercial operatiofisnes andplaces
of sampling are largely not controlled bythe investigators (which has led to
increasing use of researchessels that can beoperated in specifiedpatterns).
The exploitation isusually continuous within the seasonsset by regulations,
but the amount of effort may varysubstantially intime, and my also be
correlated \ith past success and local population densities. These and other
difficulties have led research workers toincorporate taggig programs with
catch-effort studies. Such agging programsare almostalways of the"single-
recovery" type inasmuch asthere is no prospect ofreleasing tagged
individuals caught in large scale commercial operations.

In many fisheries situations, there may be more emphasisestimating
rates of exploitation than on population size. Forthe most part, exploitation
rate is measured by estimatingurvival rates, andthis almost alwaysbrings in
the @mplications involved in separating fishing and nam-fishing mortality
rates.

A serious problem in ing catch-effort methods is that the
"catchability” may changeas exploitation continues. One obvious prospect is
that the vulneraibtity of several age-classes #txploitation maydiffer. As the
more vulnerable age-groups are removed, catchability will appeadetrease.
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Normally such an effect can be studied byexamining data pertaining to
different age groups separately.

In sports hunting there may be twofacets ofchanges incatchability.
One is the higher vuherability of younger animals, which leads to an
apparent decrease incatchability asthe seasonprogresses. The other isthat
heavy hunting effort usually occurs early inthe season. Insome situations
this may mean that hunters tend tinterfere with each other aml thus reduce
the effective catchability early in the season. Amditional factor may bdhat
inexperienced hunters tend to give up after afew days; incombination these
two factors increase catchability asthe seasongoes on.This plus decreases in
vulnerability could make for marked changes tme. However, there are also
circumstances, such as deer-huntimg heavy cover, where the higher levels
of effort may actually be more efficient in finding and harvesting the
available animals.

Apparent changes in catchability may also be due to other
circumstances. Wh relatively short seasonsand high effort, sports hunting
studies may beconducted asthough the population were "closed" to other
losseswith the exception of"crippling" loss whereby animals are Kkilled but
not recovered. For the most part, such losses tend to beproportional to the
recovered kill so that theecorded catch per unit of effort isless han actual,
and the population size isunderestimated. Inany case, theeffects ofchanges
in catchability and other urcertainties have largely limited application of
catch-effort methods tocommercial fisheries.The approach should, however,
be considered as @otential index method in other situations, sehat the main
features are discussed here.

9.12 Models for catch-effort data

The basic model forcatch-effort studies is onedeveloped bylLeslie and
Davis (1939) for animal trapping studies and by DelLury(1947, 1951) for
fisheries work, and is thus sometimes called theslieeDelLury model. Work by
Moran (1951), Zippin(1956), Ricker (1958), Chapman (1954), andHayne (1949)
has led to their names also being attached to various versions of the equations.

The population is assumed to be closed to all lossté®er than the source
under study, and to any form ofecruitment. One simple and useful way of
approaching the method is to visualize random sweeps of atlmetugh a fixed
unit of volume in some large region containing N animals. If the sweeps are of
fixed size and are randomly executed, hen the prospect that an individual
animal is caught inone sweep can beegarded as a binadml-type situation,
with the probability of capture (P) depending onthe fraction of the total
volume swept by the netlt is assumed, oftourse, thatthe animals are unable
to escape thenet and that the sweepall constitute the samefraction of the
total volume. If the sweeps arerandomly located, there is noneed toassume
that the animals are distributed in any particular fashion --the probability
that any given individual is caught does not depend on position ofothers if
the sweep is don€'at random”. Such an argument does, of course, have to
encompass the verwnlikely prospectthat all of the animals present could be
accomodated in one sweep.
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Assuming that the sweeping isdone atrandom, wecan determine the
probability that agiven individual is caught onthe ith trial very simply as

P(l—P)'l, that is, the animal escapesi-1 sweeps, each withprobability (1-P)
and is caught (with probability P) othe ith trial. Again thispertains only to
the fate of a particular individual. Ifhowever, itis postulated that the chance
that any oneindividual is caught des not depend onthe fate of the other

individuals, thenthe expected valueof the total catch, @, in the ith sweep can
be written as:

B(€ NP(1-P¥1 (9.20)
and the equation can beconverted to anodel relating number of capres in
each sampling unit (sweep of the net) to the accumulated units, i.e.:

log G = log(NP) + (i-1)log(1-P) (9.21)
and this equation can bétted to data byordinary regression methods. This is
the form in which the equation has been used to describe "removal" trapping.

DeLury used a "catchability coefficient", k, rather than P, and
considered results in terms of the catch per unit of effort, rather thaoatsh
per sweep of asingle net, as above. This is achange necessitated by the
continuous nature of a commercial fisherypn which there may be darge
number ofnets orother fishing "gear" in use simultaneously, and in which
the records may be in terms eftimmaries for fixed lengths of time. It ighus
necessary toassume that thevarious units of effort (which may be, for
example, several vessels fishing for a week) are independent (i.e., vessels do
not interfere with each other's success) and write the relationship as:

t € kN(1-k)Et
where K represents the cumulated units of effort up tothe time when
measurement of {began; that is, K is made asnearly analogous tdi-1) in
e(q.(9.6) as possible. Aso, when k issmall and [k is large, the equation can
accurately be approximated by:
t =CkNekEy (9.22)
and written in logarithmic form as:
log Gt = log(kN) - k& (9.23)
which can be fitted by simple linear regression of logarithen of atch per
unit of effort on cumulative effort. It should be noted that the samgression
fit can be used foreq.(9.21), ‘ith the main difference being in how one
interprets the regression slope. In theegent equation,the slope estimates Kk,
the catchability coefficient directly, while imq.(9.21) itestimates log(1-P). Of
course, if P issmall (as itwill be when large populations are involved) there
may be no practical difference, since log(1-P) is susceptible toseries
expansion inwhich the main term is-P. Seber(1983:302-303)calls eq.(9.21)
Ricker's method, and eq.(9.23) DelLury's regression model.

A serious theoreticallimitation on eq.(9.20) is that thesuccessive fare
by no means independent, a fact emphasized by Moran(1951). Ifcapéure of
any individual animal is assumed to beindependent ofthat of any other
individual, then a binomial model for theapture of Xout of Nindividuals can
be used:

Pr[capturing X individuals in one trial] = E() PX (1 - PN-X
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and the model can be extended d¢over n trials inwhich each of Gindividuals

are caught. Estimating equations wre obtained by Moran(1951) andvarious
approximate solutions and methods for obtaining sample size and so onwere
obtained for these "removal" methods by Zippin (1956,1958).

Another way to approach the problem of non-independence of
successive catches is to consideach such catch in terms of "@onditional”
model. If the probability of catching aiven individual is regarded as k (as in

DelLury's development) ten onthe ith trial the expected catch is that of the
binomial expectation:

i-1

BXE KIN - = G]

=1
where the term in brackets represents the number of individsalviving in
the population up tothe time of the ith amping. DelLury generalized this
model to represent anaverage catch per unit of effort, G and used K to

represent cumulative removals up to the time period being considered so that:
t CKN - kKt (9.24)
This equation can also be fitted to data by simple linear regression methods. We
thus have two elementary models, eR(® and eq.(9.22 that can be applied to
data from populations that are "open"only to the removal method being used
to estimate population size. Applications mostly have to be limited toather
short time periods and conditions where some other form ofloss quite surely
does not apply. In the great majority of cases, one hato assume losses from
other causes, and often to account for various forms of recruitment to the
population under exploitation. These problems, plus uncertainty as to the
constancy of k,the "catchability coefficient", may require gzxial auxiliary
studies, often accomplished by tagging aumber of individuals in the
population being studiedThose facing such problems should consult the book
by Ricker(1975) and the recent fisheries literature.

Exanpl e 9.8 Cal cul ations for catch-effort nodels

There are a nunber of ways to estinmate variances and confidence
limts for the catch-effort nodels. These are sumarized by Seber
(1973,1982: Ch.7). Mst current usage is based on regression
cal cul ati ons, where the nodels are represented as:
y = a + bx

where y is either catch per unit effort (eq.9.21) or log C(t) as
in eq.9.23, while x is cunulative kill or cunulative effort. We
then recall that sinple linear regression can be viewed as a
straight |ine passing through the nmeans of the observations:

y-y =bx- )
or,
y=(y- bX)+bx=a+bx
and that b is estimated by:
b= Z0 = 9)(x ~%)
Z(x — %)

In both of the equations (9.21 and 9.23) k is estimated by b,
while a is either kN or loge(kN). Confidence linmts for k can be
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calculated directly, as in the usual |inear regression
calculation for b. However, the regression intercept (a) estimtes
the product kN, or its logarithm so that an approximation is
required for a variance estimate of N, which is estinmated from

N

or by solving for Nin

loge (kN) =y - X

i.e.,
Vo
N = exply - X)
(students should remenber that b will be negative in the present
situation).

Seber (1973,1982:Ch.7) gives an approximate variance estimte
for N appropriate for the logarithmc form(eq. 9.21) as:

Ving = Nt g o L e

and for eqg. 9.23 he gives:

2 \2

£ 1 (N-x)
V() = 2 (= + 2]

b*'n X(x —X)

To use these equations in practice, we substitute the "variance
about regression" for s2. It will be recalled that this is
estimated as the "nean square" of the deviations of the
observation fromthe regression line, i.e.

@ = Z(h —a-bx)®
n-2

The nunerator can be rearranged by using a = y - bx , grouping
terms, and then witing out the squared ternmns:

S[yi- ¥)+ b(xi- X)2=2(yi- ¥)2 -2bE(yj - ¥ )i - X )+ b25(xj - X )2
Substituting the estimated formof b reduces this to:
Z(yi- ¥)2 - b2E(xj - X )12

and the two "sums of squares" on the right can be calculated from, for example,

_ Zi 2
2(y, - y)° =2y -2 r{)
Vari ances of a and b are cal cul ated as:
2 2 2
V(b) = S—_2 and V(a) = i_z
3(x - X) nz(x - X)
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That for v(b) can be used directly to obtain approximte
confidence Ilimts on k, as:

Kt th-2[v(b)]1/2
Example 9.9 Variable-effort nodels

In the variable-effort nodels described above, the fishing
nortality rate, F, was assuned constant. Wen this is an
unrealistic assunption, an alternative is to consider nortality
due to exploitation to be proportional to the effort, so that F;j

= kEj where Ej is the effort in the ith time period and k is a
constant "catchability coefficient” (as used in eq.9.23 and 9. 24).

In generalizing the nodel, one may as well also permt tine
intervals of wvarying length, so instead of a constant tine
period, t, we now use intervals tj - tj-1, where i = 1,2,3,...,

and tg denotes the beginning of exploitation. Thus where eq.9.25
contains a term si-1 as the product of constant survival rates

through the i-1 previous intervals, it now needs to be a product
like s1s2...s5j-1, which would then be replaced hy:

si = e"(KEj + X)(ti - tj-1)

and the equivalent of eq. 9.27 becones:

KE{N
i = g5 xR CS(E] + X)(G - §-DIL -exp{KE+X)(ti-ti-1)}]

This new equation is not so readily treated by regression nethods.
One approach is to consider the ratio G +1/ G, which, after

taking logarithms (to base e) and rearrangi ng gives a conplicated
equation that can be replaced by an approxi mate sol uti on by
droppi ng the second logarithnmc termand rearranging the result
so that a single linear regression equation (y=a+bx) results
Wit h:
= ! lo [CLEH] and a=X, b=k, and x=E;
y tl_tl -1 ge |+1E| ’ ’ ' |

Estimates of the slope (b) and intercept (a) provide approximte
val ues of the unknown quantities X and k. An inproved estimate is
then obtained by substituting these trial values of X and k in
the second logarithmc term and then using the entire right-hand
side of the equation as y in a new regression calculation. The
resulting estimates of k and X can be again substituted and the
regression cal cul ated again to check whether the estinmates change
enough to justify another cycle. Readers famliar with the series

expansion of e X will note that one might start with y values as:

1 o [CiEi+1[ti+1-ti]
Y= ttio1 %% lciiiEltie1 -tii1]

to give a sonmewhat inproved first approxi mation.
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A fault in the above procedure was noted by Chapman(1961), in
that the successive y values will be correlated, again violating
the essential assunptions for ordinary linear regression. To see
this, one can exanine the first 3 values of vy:

S CiE2
yl - tl _to Oge C2E1
1 C2E3
1 | C3E4

from which we see that successive terns contain conmon elenents,
e.g., Ep/Cy appears in y1 and again in y2 (inverted). One way to
avoid this is to restrict the regression calculations to every
other data point; one could thus do two separate regression
cal cul ati ons and average the resulting estinates.

Evidently the above cal culations will be sonewhat invol ved and
tedi ous. Wien effort varies markedly from period to period, an
approach like this one seens to be the only realistic answer.
Readers should note that when effort is constant fromperiod to
period, the basis for this procedure collapses. In fact, other
t hi ngs being equal, the wider the range of effort enconpassed by
the study, the nore informati on one gets about k and X

Exanmple 9.10 Catch-effort data on an "open" popul ation

Sone data on a popul ation of tagged juvenile cottontail rabbits
may be used to study the effects of natural nortality (Eberhardt
et al.1963). The data apply to the 1955-56 hunting season, and
were selected from7 years of simlar data as giving the best fit
to a regression line. Hence the variance about regression (or
correlation) should not be regarded as typical of such data. In
the first 3 weeks of hunting, 32 tagged individuals were
harvested, but the effort data are not usable, since this period
enconpassed heavy hunting for pheasants.

Weeks of  Tagged Effort

season animals in y X
shot gun-hours log(C/E) E(t)
Cj Et
4-6 23 984 9.151 0
7-9 22 1167 2.936 .984
10-11 13 1042 2.524 2.15
12-15 9 1059 2.140 9.193
A total of 230 tagged juvenile rabbits constitute the pre-season
popul ati on. Regression cal cul ati ons gave the line: y = 9.196 -
. 3213x

One woul d thus estimate the initial population size as:

kk—N = a/b = 9.196/.321 = 99
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If we add in the 32 rabbits killed in the first 3 weeks ("pheasant
season") this gives 131 rabbits as conpared to the 230 tagged
bef ore hunting began.

Turning to eq. 9.28, we see that the intercept and sl ope now
represent a nore conplicated expression:

a = loglirs(1-exp[-(F¥X)] ) ]
b = (F+X)t

Fromthis we can esti mate:

FN

m = 88.92.

Sone other data yield an estimate of the instantaneous rate of
natural nortality of 0.089 (calculated on a nonthly basis). Using
this rate and assuming the above periods to be uniformy t wo
weeks long, and 4 weeks in a nonth, students should estimate N
To conpare the outcone with the initial population (230), assune
4 weeks of natural nortality between tagging and the begi nning of
"pheasant season" (which was 3 weeks in |ength).

9.13 Catch-effort models with non-harvest losses

Sources of rortality have commonly been divided into two categories,
one due to exploitation and the other due to other causes, operating
concurrently vith the harvest, and usually described a$natural" mortality.
When taggedindividuals are included in the analysis itseems best toefer to
rates due to exploitation and to "other" causes in order to be abprotode for
the additional mortality due totagging, and the possible effects of loss dfags
and non-reporting of tags.

The elementary model can be itroduced by considering survival over
some fixed period as a constant rate, s, and supposing hidnatest takes a fixed
fraction, f, of the population available during the interval. Letting the initial
population size be N, we then have the first catch)(@s:

1 <f(1-s)N
which can be interpreted as saying that, of the proportion dying in ptheiod,
a fraction (f) are taken bythe hawest method. The number surviving up to
the next period is just sN (since (1-s)N died in the first period), so that:

2 £€f(1-s)sN
and, since 2N survive to the third period:
3 €f(1-s)¥N
and, in general:
i =Cf(1-s)d-1IN (9.25)

The notion of "competing risks" (see Ricker 1975), or instantaneous
rates, leads to defining:

s=e_(F+X)t and f= F
F+X

(. 926
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where Fdenotes the rate ofexploitation (Ffor fishing) and Xthe "other loss”
rate. When theother losses areassumed due only to natural mortality, the
symbol M is commonly used rathehan X.Since therates are"instantaneous
and thus are independent of length of the time period, iheisessary talefine
an arbitrary interval length, t, and write equation (9.25) as:

[ F+NX] e (FHX)t(i-1) [1 - e(F+X)Y (9.27)

i €

If t is now defined interms of a "unit of effort" then eqtion (9.27) serves to
replace eq.(9.22) incircumstances where the population is"open" to other
sources of loss. In effect, units of effort are regardedomsrating sequentially
on the population, so that we have tk#ect of i time intervals, each oflength

t during which the losses takeplace. In practice, many units of effort are
applied simulaneously tothe population. The model may nonetheless be
satisfactory, but the effect will be one of making estimates of Fand Xdiffer

from year to year or place to placalepending on howthe effort is applied

(how it is distributed in time and space).

A number ofschemes have beendevised to estimatethe parameters of
eq.(9.26) from actualdata. One of the simplest is to takelogarithms (using
natural logs) giving:

FN

log G = loglye {1 - e (F+X)ty] - (F+x)t(i-1) (9.28)
and letting y = log Ci, a = Io%{l - e (FtX)ty p = (F+X)t, and
x =i - 1, which gives a simple linear regression model:
y =a+ bx.

This can readily be fitted to data on catch per unit effort and time (or
cumulative effort). Since t is presmably known, the regression slope (b)
gives an stimate of F+X. and interest hen centers onestimating F, and
possibly N, from the regression intercept (a).

When a tagging or marking study is used, N is a knogwantity and the
regression intercept can be written as:

- e—(F+X)t
a=logF +logN + Iog]-[iIZFX ] (9.29)

so that an esthate oflog F can be obtained by subtracting log N and an
estimate of the quantity in lrackets calculated from the slope dsmate (b) of
(F+X) and t. Animmediate problem ith estimation from eq.(9.28) is that the
conditions of such a study donot conform very well to the assumptions
required by a simple linear regression estimate.

In many situations, it is mrealistic toregard F asbeing constant from
time unit to time unit, because afubstantial variations irthe effort expended
in each time unit. Although grouping of units of effort has been used to
produce new units of roughly equal size, such a practice is not very
satisfactory if X, the "other loss" rate, is constant over time.

9.14 Sampling for indices
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The various umertainties about interpretation ofindices, combined
with conditions of their use, do notmake it any less important to conédrm to
good sampling practice in the use of indices. By datge, most index methods
are applied onrather krge and heterogenous areas sothere isgenerally a
prospect for considerable gains in efficiency (and the concomitant reduction
of effort required) through the use ofstandard methods, like stratification.
Since indices are usually rather tightlired to seasonal conditions, asampling
design needs to be arranged to permit study of seasonal effects, too.

Specific sampling methods need to betailored toeach index,and this is
best done by wting a model of the kind already describedbut containing
parameters relevant tothe major factors that must be considered in the
particular instance ahand. Where possible, Beemsdesirable toarrange the
design in two ormore stages.The first stage should beconstructed interms of
those factors that are fairly well understood, sothat the effects of
uncertainties about a particular index are mdikely to crop up in the second
(or lower) stage. In nearly all cases, one mightexpect to do areasonably
efficient job of stratification by area andtime, and torestrict the effect of
other factors on an index to subsampling within the strata.

Stratification very likely will need to bemore nearly of the kind
generally described as"analytical” in view of the hazards ofgetting area
effects entangled with strataThat is, generally one wuld make anindividual
stratum out of asmany contiguous units as possible,and try to avoidhaving
scattered units belonging tothe same stratum. However, if calibration is
attempted, one cannot usually have more than afew strata, or cets of the
requisite independent density estimates become too high.

9.15 Transformations

Most of the few statistical analyses ofindex data done so far have
employed transformations. The stated purposethef transformation usually is
to attempt toachieve normlity. There are, however, other requirements for
the analysis of data of this kind. One arrangement is:

(1) additivity
(2) constancy of error variance
(3) normality of distributions
(4) independence of observations.

The usual goal in making atransformation is tocarry out an analysis of
variance. Thus one might haveesults of, say,roadside counts carried out over
several years and in anumber of different areasand wish to know ifthere
are statistically significant differences inthe underlying population levels
between areas an@dmong years. Nearlyall of the published analyses ofindex
data have been sdandled. Anexample ofthe analysis ofvariance onindex
data appears in Example 9.4.

Securing independence of observations is largely dependent on how the
observations are taken. Constancy ofvariance and normality of error
distributions are often aken asone feature, while additivity implies that the
underlying model is linear, that is, of the form:

ij XAj + Bj + §j (9.30)
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so that an index value in year and area jdepends on an effecdue toyears
(Aj), one due to areas {Band a"random error compoent” (gj) which should

be normally distributed wth E(ejj) =0 for analysis ofvariance purposes. The

usual analysis of variance table gives components associated witheldhments
of eq. (9.30) and uses the estimate of j\)J(@s a basis for tests afignificance of

the "contributions"” of year and area terms to the total variability.

Most of the available analysesof ecological data seem tgroceed along
the lines ofseeking atransformation that tends tonormalize the data, and
then assuming that eq.(9.30)is satisfied. This is adangerous course, if the
investigator is reallyinterested insorting out the various effects influencing
his data. In that case, theessential need is toachieve linearity (additivity) in
the model. Fromthe form of equations (9.22), and (9.27) it isvident that a
logarithmic transformation will often berequired. Ifthe true relationship of
index and density is aspostulated in these equations, taking logarithms
effectively converts them to additive (linear) models like eqg.(9.30). If the
results are to confom fully with the analysis ofvariance requirements, then
one must also assume that anerror component is multiplicative, i.e., for a
roadside count conducted in the same area donumber of yearsand areas one
would write the model as:

ij XBj Dij &j
so that:
log xjj = log Bj + log Djj + log (9.31)
and investigate the prospect that thease areaeffects onthe proportionality
coefficient (B) as well as assessing population differences. If the error

component isassumed to be uitiplicative, and it is further assumed that
taking a logarithm converts it to anormal distribution, then those two
assumptions imply that the original distribution was lognormal in form.
However, such assumptions maybe somewhat fictitious as evidenced, for
example, bythe previous remark that pellet-group data follow the negative
binomial distribution reasonably well. However, the difference between
negative binomial and lognormal distributions maynot have much of an
effect after log transformations.

Use of the analysis offariance technique omndex data calls forrather
more detailed studyhén ispossible here.The major point to be mde isthat
blind use of a transformation seems extremely unwise.miwst practical cases,
the experienced investigatorreally has little interest in some of the tests of
significance. He will have long since concluded that there are déffilerences
in population densitybetween areasand will largely beconcerned \wh year
to year changes onindividual areas, and with studying the magnitude of
differences between areas. He will also want to look for effects duebterver,
as might be identified in Exampl®.3 in logarithmic form (where i pertains to
observer and j to area):

log Xjj = log B + 2 log j + log Oj + log §;

Analysis of some of theother equations might be considered Bsimilar
terms, but, as already noted, the usualapproach is through regression
methods. Regression equations eme previously mentioned here awols for
estimating some paameter (eg., population size) in the model, buthey can
also be studied in an analysis of variance format.
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One further aspect oftransformations isthat investigators tend to be
somewhat uncomfortable about presenting results of an analysisin terms of
the transformed variable.For the roadside count examplepne mayoriginally
have a variable expressed as so many animals seen per mile of driving (or per
hundred niles, hours of observation, etc.). The logarithmic transformation
yields an "unnatural” kind of datum. The usual advice is tdransform back to
the original scale, neglecting the prospect that such atransformation will
introduce a bias. Sometimes this may be the hmsicedure, particularly if the
results are to be usedextensively for administrative guidance. However, it
should be rememberedhat we are really considering the use of anindex and
there should notbe any special disadvantage to using aimdex in logarithmic
units. In fact, the behavior of the index (additivity) may be much more
suitable onthe transformed scale. Consequently, It isoften not desirable to
transform back to the original scale. Staying in the transformed scale is
particularly desirable if several indiceare combined, asdescribed inthe next
section.

9.16 Combining indices

The problem of combining population indicelsas notbeen hvestigated
in any detail in ecological studies as yet. Related problems exist in
econometrics, but the resultebtained there have not been applied in ecology
as yet. We will assume thaeveral independent indices are available, andthat
the need is to combine them to constructsimgle, overall index. Independence
here means derived fromdifferent and unrelated sources, and thus refers
largely to the sampling methods.

Part of the problem isthat the individual indices will generally have
different scales ofmeasurement, in consequence tbé kinds ofinformation
on which they are based. One possible structure for an index value is:

1iX= B1Dj + eq;j (9.32)
where D[ represents the true density and 1 represents dscale factor" or a
"proportionality constant”, while e1j represents aandom error component.
We thus assume that a given index value is proportional to the true density, but
has associated with it aandomly selected fluctuation, due pesumably to a
variety of influences onthe observational process. The usual approach in
problems of this type is to assume that jB(e= 0.

Equation 9.32 can be used tdndicate what results when correlation or
regression techniquesare applied to indices. Supposing wehave asecond
index, with structure:

2i D+ epj
Then an indication of the behavior of the correlation and regression
coefficients, assuming large samples, can be given as follows:
2 2 2 2
E{S): Bl ODl + Oel

2 2 2 2
gis): B2 op + g



9.47

2
E(s) =B1B2 op
where c% refers tothe true variation inpopulation density over the set of

areas being investigated. Then the sample correlation coefficient (r) is
approximately:

— Sx1x2

2
B1 B2 OD

2

{8202 + 02 8203 + oo}l 112
2

%1 %2
Consequently, aery high correlation between two indices might be taken to
mean that bothare nearly directly proportional totrue density. However, this
depends onthe indices being obtained from independent sources (otherwise
the two indices may simply havehighly correlated errors), and on the
correctness of equation 9.32.

so that r approaches unity only if and are nearly zero.

The regression coefficient (b) is approximately:

Sx1x2 B.B,0%
-bz— = W (9.34)
SXZ 2%D e2)

so that it is necessary for = 0 before the regression coefficient will

Og
reflect the true ratio of the twacoefficients. This is the situation where one
index is exactly proportional totrue density, andone that is not likely to be
encountered inpractice. It isalso the usual condition for regression analysis
(i.e., that the independent variablee measured without error). If the ratio of

2 2 . . .
op and Ogo is somehow known, thenthe regression coefficient can be

estimated without bias. In the usual circumstances, one doesnot know the
ratio, and the problem becomes difficult to handle.

In many cases, theinvestigator will have atleast arough idea of the
sampling effort that went into each index. Such information can serve as a
source ofweights for combining indices -- usually just by comrting the
"sample sizes" to proportions and multiplying theansformed index values by
these weights. Before doing so, it is necessary taconvert the indices to the
same scalelt also seemsessential tohave roughly the samespread ofvalues
for each index. One simple way to achieve this result is to transform the
several indices to have about the samemean and variance. Ifthe mean and

variance are selected assome convenient values, say Z and 8, then the
coefficients A and B for the transformation of th&iindex:

i =BXj + A
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are obtained by notingthat the variance ofthe transformed index should be
equal to the original index adjusted by a constant:

5(z-2)2 Q B25(x-X)2
(n-1) ~ ~ (n-1)
so that:
B =SIs, (9.35)

and since Z = Bx+ A we have:

A =Z-(SIs)x (9.36)
A new set of coefficients (A,B) has to becalculated for each set of index data.
The transformed index values are hen combined by weights obtained as
suggested above:
Y =W + Woz2 + ... + Whnzn (9.37)
where there are nindices and the weights (W) sum tounity. A transformed
value will, of course, be obtained farach area andime period under study, so

that the y ofeq.9.37 might bewritten as yj to pertain to the ith area and tjh

time period. Thenthe index values wuld have to bewritten as jk (k for kth
index), and so on.

All of the above pertains to amodel (eq.9.32) which assumesthat the
errors are additive. In Sec.9.12 it waspointed out that the logarithmic
transformation implies that the model really is:

i =XB Di €
and the logarithmic transformation pesumably makes it possible to
investigate index behavior over aset of aeas. Combining different indices
will then partly beconditioned by the results of the statistical analysis of
individual indices, and clearly can become quite complicated.

9.17 Converting indices

It has already beennoted here thatthere are circumstances where an
index value is notsuitable for management purposes. This suggests aeed for
ways to convert an index to an estimate of actual density -- or"dadibration”
of an index. If aset of areas exists on which true population density can be
estimated, then an appent solution isjust to compute the regression oftrue
densities onindex values. However, it seldom is possible to measure true
density without error -- ordinarily some sampling process is involved. This
then puts us in eactly the ame position asled to eq. 9.34except that it may
now be assumed that 31 = 1, so we have:

1
= 38 )
Oe,
+
b po
and a knowledge ofthe ratio of the twovariances is required tmbtain an
estimate of 1/B2 for conversion or calibration purposes. Some elements of

strategy for planning calibration work are evident from the above

2
relationship, though, i.e., keep Ogy 8S small aspossible and choose theset of
population densities used to have as wiglerange agossible. Very likely these
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may be conflicting aims, since the choice of low densities may tenthdoease
2
O'ez .

When the regression relationship can be assumed to gthrough the
origin, and if the variance of y increasesproportionately \th increasing x,
then the ratio atimate (cf.Cochran 1977) is known to be optimum and
unbiased. Using the same model as above, we have:

SE)/E(zx)) = 1/B2
so this estimate is approximately unbiased. nmwst real-world sitations, these
are the more likely assumptions han those of linear regression, soratio
methods are to be preferred to regressions, here.

As mentioned before, there are reasons todoubt the accuracy of the
usual approximations tovariance estimates (and hence confidence intervals)
arising from the presence oferrors in the independent variable (X). Very
possibly there should beanother component of variance ithe equations. A
related issue has to do with thelistinction between ratio estimators (total of
the X assumedknown) and double sampling (only a sampleof the X assumed

known). Wth measurement errors inthe X one canhave anobservation on
Xj on every study unit and still notkhow" the total. That is, were a newsurvey
possible, it would not give the same total.

A somewhat pessimisticview of what isknown about doublesampling
with errors in the independent variable can be tempered, however, by
another look ateq.9.33. Asremarked there,the sample correlation coefficient
(r) approaches unity only if measurement errors in Xand Y are nearly zero.
Hence observing sample correlations onthe order of 0.9 or better with index
data, gives one some considerable mcouragement tothink that the

measurement errors are small, at least in relationo%?. Hence,there are some

grounds tosuppose thatthe bias ineq.9.38 may not beunreasonably great,
supposing B2 is not very small.

9.18 Comments on the use of index data

Although Fig. 9.1 suggests avariety of ways to approach the use of
indices, a great deal of research maybe required before really suitable
methodology is availablefor dealing wth indices. Soma of the problems may
be worth mention here. One very important issue isselecting amodel for the
analysis. Using a simple multiplicative model has several advantages. One is
the log-transformation which tends to "normalizehe data.The second isthat
it produces dinear relationship vith time, if the population is chAnging at a
constant rate (e.g., growingexponentially). One very important question is
whether prospective auxiliary variables do in fact have a multiplicative effect
on the index, so that thdog transform yields a simple linear model. Perhaps
an even more important question is whether the actual population is
changing at a constant rate.

At present, the main approach todealing with a situation where a
number of variables may be involved seems to be to identify any varidtiad
may possibly berelevant (and, ofcourse, thatcan bemeasured!). Because the
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underlying relationship may not be Ihea, a squared d¢rm is sometimes
introduced in the set of variables to bestudied. Aneffort is then nade tofind
out which of the several variables considered may be worth keeping fimad
model. One might, for example, want toconsider 5 candidate auxiliary
variables. Including squared terms for each, hen vyields 10 variables. The
immediate problem isone of reducing the set to somesmaller number of
"significant" variables. One approach is tocompute all possible regressions
with each of thecandidate variables left out in turn, and with that variable
included, and to use one omore criteria tosee whether inclusion of agiven
variable isworthwhile. Three such criteria are frequently considered, one

being the regression mean square,the second R[eq.(9.11)] andthe third Cp
[eq.(9.17)}.

With as many as 10 variables, this approach gets oubaofd, insasmuch

as there are "2equations to study &P = 1024). An alternative is tcstart with an
equation containing all 10 variables and use apre-determined procedure to
work back through the list and toeliminate those variables that do not meet
certain criteria. Athird procedure isstepwise regression, sarting with the
"best" variable (most highlycorrelated \ith the index) and work through the
set, adding a newvariable if it meets asignificance criterion, and stopping
when there isn't a significant improvement.

Because a lot ofcomputing isinvolved, these procedures generally
depend on acomputer program. Differentresults may be obtainedfrom
different procedures, and depending onthe order in which variables are
introduced, and opinions on how to proceed maydiffer from reference to
reference. One should alwaysexamine (plot) the residuals from regression to
see whether they provide any hints as to possible improvements.

The Cpcriterion seems to meunlikely to be very useful for index
studies. Asdescribed byDraper and Smith {998), it may bemost useful in
situations where there isome reason to believethat most of the variables
relevant to the process being studied aneluded inthe set to beanalyzed. Cp
may then serve in picking out sets that are somehow "adequate" to describe the
process. It is unlikely that one can hope m@asure most of the variables that
influence a population index.

The likely situation can besuggested for the bear data of Example 9.6.
Fig. 9.20 shows the data of Fig. 9.4 wth the regression mean square of the
adjusted bear indeXeq. (9.18)] added. Theinclusion of auxiliary variables has
reduced the regression mean square toabout 40% of that of the unadjusted
index, and thus presumably yields a better index pofpulation trend. However,
there are a lot ofsmaller regression mean squares inthe dataset of Fig. 9.4,
presumably because thesepopulations wre more accurately enumerated.
Using the delta method toaproximate the variability of the bear population
(assuming survival rates and population sizes suggested byEberhardt et al.
(1994) and Eberhardt and Knight (1996) gives roughly the "true" variability
shown at the far right side of th&gure. Clearly agood deal ofthe variability
in the index is unaccounted for. Sampling or measurement error in
determining two ofthe auxiliary variables (frequency ofsighting and snow
depths) may account for some of the difference, but certainly not all.
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Fig. 9.20. Data of Fig. 9.4 with adjusted bear index and estimates ofactual population
variability added.

One may thus beénclined todoubt the utility of Cp in ecological index
studies. Because it utilized®RSSp, the regression sum of squares, itwill likely
follow the trend indicated bythe regression mean square. 180, RSSpfor the

model with all significant parametersincluded isthe same as RSS(full) of R

Hence, it maybe best touse regression mean square and R as criteria for
studying potential indices by multiple regression. One can interpret the
resulting regression mean square by comparison to other values plottdgigin

9.4. It might also benoted that anearlier comment (Sec. 9.9)that "R? cannot
become unity" is strictly true, but the very low value of estimatedpopulation

variability for bears (Fig. 9.20) suggests that R2 will become very close to
unity when variability in regression mean squares is mainly from
stochasticity. A numberof such examplesare present inthe data used forFig.
9.4, as shown in fig. 9.13.

9.19 Exercises.

9.19.1 Plot the data of Example 9.2 and suggest how one might go about trying
to determine whether the two estimates of b given in the example are
different.

9.19.2 Plot the data on Gambel quail from Example 9.3 and the ratio and
regression lines. Which of the two lines appears to fit the data best? Why?

9.19.3 Conduct the analysis of variance described in Example 9.4

9.19.4 Data for counts of bison and for muxkox (Fig. 9.3) are given below. Using
natural logarithms of the data fit a straight line and the “quadratic” of eq.
(9.4) and use the F-test of eq. (9.6) to test for curvilinearity. Discuss the
difference in results between bison and muskox. Plot the residuals to see if
they help in explaining the difference.
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YEAR NO. OF MUSKOX YEAR NO. OF BISON
1950 61 1909 37
1951 76 1910 48
1952 77 1911 70
1953 90 1912 85
1954 100 1913 104
1955 116 1914 130
1956 126 1915 164
1957 143 1916 194
1958 181 1917 240
1959 206 1918 295
1960 256 1919 367
1961 293 1920 420
1962 353 1921 479
1963 406 1922 554
1964 467

9.19.5 Using the data on brown bears of Table 9.3 without year 6 (only one
point) conduct a one-way analysis of variance for differences among years
using untransformed data and then using a log-transform. Which seems to be
the best approach? Why?

9.19.6 Estimate lambda for the gray whale data of Table 9.4 using egs. (9.7),
(9.8), and (9.9). Compare the resulting estimates with the rate obtained from
log-linear regression on the data.

9.19.7 Calculate the Durbin-Watson test [eq.(9.13)] on the residuals from log-
linear regression from the gray whale data of Table 9.4. Report the value of d
and comment on its meaning. What is the mathematical relationship between
the slope and lambda for Table 9.7?

9.19.8 Repeat the calculations for Example 9.5 (sea otter census). Estimate the
ratios for each day from eqgns. (9.7), (9.8), and (9.9) and compare with the ratio
estimates obtained by pooling the data from all 3 days. Do they suggest some
differences? How might you test for significant differences between days?

9.19.9 Data for the counts of Yellowstone grizzly family groups (Example 9.6)
appear below (note that the snowpack data have been “centered”—deviations
from the mean are shown).. (1) Computé &d $ for loglinear regression on

the original counts. (2) Then compute? Bnd sfor the full data set, i.e., using

the two auxiliary variables along with year. (3) Extend the computations to
include £ (year-squared) as an auxiliary variable. Discuss your results. What is
the effect of 1?

LNCOUNT YR FREQ SNOPAK

2.833 1 1.64 7.568
2.565 2 1.5 10.368
2.197 3 1.28 -18.432
2.565 4 1.08 3.868
2.485 5 1.4 1.568
2.639 6 1.58 -4.432
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2.398 7 1.62 -9.832
2.565 8 1.2 9.568
2.833 9 2.29 2.868
2.197 10 2 -4.332
3.219 11 3.12 -0.632
2.565 12 1.64 3.568
2.944 13 2.12 -15.732
2.773 14 1.86 -3.132
3.219 15 1.95 8.968
3.178 16 2.65 -4.732
3.135 17 1.65 0.468
2.996 18 1.67 -6.332
2.996 19 1.47 3.268
2.833 20 1.47 -5.332
3.497 21 1.96 12.668
3.434 22 2.95 8.168

9.19.10 Do part (2) of Exercise 9.19.9 but use the actual years (1967, 1968, 1969,...)
instead of 1,2.,3 and compare the results. Some references recommend
“centering” the data. That is, instead of using 1967, 1968, 1969,... find the mean
of this column and use the deviations from the mean as the x-variable. Try this
and compare your results.

9.19.11 Note that (Fig. 9.16) the observed count for 1985 differs considerably
from the predicted value. Do you think that value should be dropped from the
index? Can you justify your answer statistically? How?

9.19.12 Compute Cp and AIC for the grizzly bear data using all of the auxiliary
variables in the table. To compute AIC you need to know that the log-likelihood
value for a linear model with normal errors is just the usual but calculated
with n as divisor rather than n-p. That is, compute the sum-of-squares and
divide by n. The assumption of normal errors is not strictly defensible
statistically, but the log-transform seems to result in quite symmetrical
distributions from regression given reasonably large samples.

9.19.13 Lobster catch data
DelLury (1947) gave the following catch data for lobsters:

Date Ct) K@) E@)

May 23 82 0 0
24 75 7 8
25 94 13 16
26 80 16 19
27 83 22 27
29 89 25 32
30 70 32 40
31 58 37 48
June 1 64 40 53
2 55 45 61
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5 52 50 69
6 45 53 76
7 45 54 77
8 49 55 79
9 45 57 85
10 48 60 90
12 43 62 96

Using eq.9.23he estimated k =008348 and N =112.34, using simple linear
regression asutlined above. From eq.9.24, heobtained k =007984 and N =
116.33, also bylinear regression. Sidents should repeat the calculations, and
calculate  variances and confidence limits.

9.19.14 Apply the expression for confidence limits given at the end of Example

9.5 to the 2 values of k obtaiend in the lobster catch data of Exercise 9.19.3.
Report your results.

Exercise 9.19.15 Removal trapping
Zippin (1956) illustrated removal methods byassuming catches of 165, 101,

and 54 animals were caught and removed in 3 nightstrafpping. Calculations
for eq. 9.21 are then based on the following data:

i G _y=loge(Ci) =il

1 165 5.1060 0
2 101 4.6151 1
3 54 9.9890 2

Regession calculations will then proceedjust as in the examples above, but
we now have b =log(1l-p). Wen p is smll, we can represent log(1-p) by -p
and the calculations are essentially thoskeady described. However, in this
case, p isclearly not small, sothat eqg.9.21 is appropriate. Sidents should
carry out the regression calculations asdmpare the estimate of N obtained
by assuming b = pand b =log(1-p). Improved methods ofestimation are
available (Zippin 1958; Seber 1973,1982:Ch.7) butequire an igritive solution
or the wuse ofgraphs (given inboth references). ¥riance calculations are
similarly complicated, and should be approached through the references
cited.

Attention tovariability is important in designing atudy based on reoval
trapping, as asubstantial fraction othe population must becaught inorder
to obtain areasonably precise estimate. If welet q = 1-p, hen the following
equation (Zippin 1956:171) approximates the variance:

N(1-gM)gn
(1-gM2qgn-1
Students should try this equation for a few values of p, n, andindreasing n

(beyond 3) doesn't do much to redutlee variance, which means that phas to
be increased (by using more traps). This has a considerable practical

VIN] =
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significance, in that it usually isnt sensible to run a removaltrapping
program very long, since imngrants will soon show up, violating the
assumption of aclosed population. Tagging some animals before the study
starts is always a wise precaution, if feasible.

Exercise 9.19.16 Combining and comparing indices

In section 9.16 it was suggested that several different indices might be
combined by: (1)transforming the individual indices to a commonscale, and
(2) weighting the transformed values by some independent measure oftheir
variability. An example was given b¥berhardt (1960), portions of which are
reproduced here to exhibit calculations. Four individual indices were used: (1)
Accidental highway Kkills (recorded by ConservationDepartment staff. (2)
"Camp kill" (estimates ofdeer tikken on a special'camp" license, obtained
through a mailsurvey ofhunters). (3)July deer counts (a roadsidetally by
Conservation Department personnel. (4) Archery kill (deer taken @pexial
"bow and arrow" hunting license, estimated from imwependent mailsurvey
of those hunters).

An arbitrary transformation to a variance of 9.0 and meap ¢ 4.0 wasused

as given by eqs.9.35 and9.36. An example ofthe calculations appears in the
second table below. Sudents should check their understanding of the
equations byrepeating the calculations. The transformed data were then
combined into asingle index as ineq.4.15, by using aet of weights, W that
summed to unity. One possible choiceof weights was the sample sizes for the
various indices:

Average
number
Index Units used per year Square root _Weight
July count Number of deer seen 5000 70 .409
Archery Kkill Number of hunters
in samples 2000 44.7 .258
Camp Kkill Number of parties 200 14.1 .081
in samples
Highway Kill Number of deer
tallied 1900 49.6 .252

1.0000
Transformation of roadside deer counts to standardized values

Deer seen per 100 hours

District 1952 _ 1953 1954 1955 1956 1957 1958
1 184 16.4 295 19.3 207 176 17.1
2 299 294 3438 295 37.0 309 403
3 309 351 37.1 352 399 328 35.5
4 278 274 425 265 37.0 301 30.5
5 49.6 328 28.1 304 298 329 35.0
6 39.7 113 16.6 85 19.7 115 19.2
7 714 786 77.8 58.2 38.1 49.2 59.7
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8 206 19.1 142 140 189 16.9 24.8
9 150 122 19.2 99 16.8 221 16.7

Transformed values

1 793 754 409 810 8.38 7.77 7.68

2 9.00 407 11.12 4.09 1155 436 12.19

3 436 11.18 1157 11.20 495 4.73 11.26

4 9.76 9.68 12.62 950 11.55 4.21 4.28

5 12.83 4.73 9.82 426 415 4.75 11.16

6 12.08 6.54 758 6.00 7.01 6.58 6.92

7 18.25 19.65 19.49 15.68 11.76 12.76 15.97

8 8.36 6.90 7.11 7.07 8.02 7.64 9.17

9 7.27 6.72 6.92 6.27 7.62 865 7.60

Data for transformation Check on transformation

2 =237.315 n=63 2=8.9991
s=15.405 B=S/s=9.000/15.405=.1947 z=10.0002
x=29.041 A=10-.1947(29.041)=4.3457

Several checks omehavior ofthese weights were used, including: (1) error
mean square in an analysis of variance of the index (comparedoefficients
of variation), (2) mean square deviation from regress{against pellet count
data), and, (3) correlations among the 4 indices. Smgee of theseanalyses
provided a measure that would be independent of the inolexervations, they
were only used tocheck onbehavior of the weights, i.e., to show that the
weights were roughly correct.

Execution of atransformation tothe same scale and mmpriate weghting

does not provide much evidence about validity of thecombined index. In the

present example, there were dawindependent masuresthat could be used for
this purpose. One wasthe pellet goup counts (already described here), and
the other apopulation astimate based onsex composition, age structure, and

kill (harvest) data, labelled the S-A-K method. Correlatins between the 3

sources were:

Combined index S-A-K
S-A-K 934 --
Pellet counts .954 .951

There is thus independent evidence that the index did indeed provide a good
measure of population levels.

In a Wisconsin study, McCaffrey (1976) introduced anotherindex, acount of
deer trails intersecting 0.4 km transects. Correlations were:

. Trail index S-A-K
S-A-K .94 --
Pellet counts .89 .781

It thus seems that this index islso well-correlated with independent
measures of deer population size.
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The guestion of howone uses a "good'index once it has beanalyzed and
shown to be well-correlated with direct measures of abundance is oreeding
further research. In broad outline, has beensuggested herethat, when the
direct estimate is available for only portiomd the studyarea, while the index
is available for the entire area, hen one might usedouble sampling (ratio
method) touse the index to arrive at an stimat for the entire study area.
Presumably predictins of population levels might be made for sub-areas
from the same relationship. These will, however, bequite variable, andjust
how confidence limitson these predictins might beobtained seems to me to
be an unresolved question asyet. In areas where both index and direct
measure are available, itdoes notseem feasible touse the index, unless it is
converted to an #timate on the basis ofprior (not current) exgrience. The
current estimates should, however, be wused in checking to see that the index is
still "in calibration".



